5,897 research outputs found
The Socio-Economic Value of the Shark-Diving Industry in Fiji
Based on a survey of divers, dive operators, resort managers, estimates business revenues from shark diving and related expenditures by area; tax revenues; and economic benefit to local communities
The effects of space radiation on a chemically modified graphite-epoxy composite material
The effects of the space environment on the engineering properties and chemistry of a chemically modified T300/934 graphite-epoxy composite system are characterized. The material was subjected to 1.0 x 10 to the 10th power rads of 1.0 MeV electron irradiation under vacuum to simulate 30 years in geosynchronous earth orbit. Monotonic tension tests were performed at room temperature (75 F/24 C) and elevated temperature (250 F/121 C) on 4-ply unidirectional laminates. From these tests, inplane engineering and strength properties (E sub 1, E sub 2, Nu sub 12, G sub 12, X sub T, Y sub T) were determined. Cyclic tests were also performed to characterize energy dissipation changes due to irradiation and elevated temperature. Large diameter graphite fibers were tested to determine the effects of radiation on their stiffness and strength. No significant changes were observed. Dynamic-mechanical analysis demonstrated that the glass transition temperature was reduced by 50 F(28 C) after irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated material. The chemical modification of the epoxy did not aid in producing a material which was more radiation resistant than the standard T300/934 graphite-epoxy system. Irradiation was found to cause crosslinking and chain scission in the polymer. The latter produced low molecular weight products which plasticize the material at elevated temperatures and cause apparent material stiffening at low stresses at room temperature
Development of computer software to analyze entire LANDSAT scenes and to summarize classification results of variable-size polygons
The Forest Pest Management Division (FPMD) of the Pennsylvania Bureau of Forestry has the responsibility for conducting annual surveys of the State's forest lands to accurately detect, map, and appraise forest insect infestations. A standardized, timely, and cost-effective method of accurately surveying forests and their condition should enhance the probability of suppressing infestations. The repetitive and synoptic coverage provided by LANDSAT (formerly ERTS) makes such satellite-derived data potentially attractive as a survey medium for monitoring forest insect damage over large areas. Forest Pest Management Division personnel have expressed keen interest in LANDSAT data and have informally cooperated with NASA/Goddard Space Flight Center (GSFC) since 1976 in the development of techniques to facilitate their use. The results of this work indicate that it may be feasible to use LANDSAT digital data to conduct annual surveys of insect defoliation of hardwood forests
Neutron spectroscopic factors of Ni isotopes from transfer reactions
177 neutron spectroscopic factors for nickel isotopes have been extracted by
performing a systematic analysis of the angular distributions measured from
(d,p) transfer reactions. A subset of the extracted spectroscopic factors are
compared to predictions of large-basis shell models in the full pf model space
using the GXPF1A effective interaction, and the (f5/2, p3/2, p1/2, g9/2) model
space using the JJ4PNA interaction. For ground states, the predicted
spectroscopic factors using the GXPF1A effective interaction in the full pf
model space agree very well with the experimental values, while predictions
based on several other effective interactions and model spaces are about 30%
higher than the experimental values. For low-energy excited states (<3.5 MeV),
the agreement between the extracted spectroscopic factors and shell model
calculations is not better than a factor of two.Comment: 18 pages, 4 figures, 2 tables. accepted for publication in PR
Recommended from our members
Simulation and Measurement of Transient Fluid Phenomena within Diesel Injection
Rail pressures of modern diesel fuel injection systems have increased significantly over recent years, greatly improving atomisation of the main fuel injection event and air utilisation of the combustion process. Continued improvement in controlling the process of introducing fuel into the cylinder has led to focussing on fluid phenomena related to transient response. High-speed microscopy has been employed to visualise the detailed fluid dynamics around the near nozzle region of an automotive diesel fuel injector, during the opening, closing and post injection events. Complementary computational fluid dynamic (CFD) simulations have been undertaken to elucidate the interaction of the liquid and gas phases during these highly transient events, including an assessment of close-coupled injections. Microscopic imaging shows the development of a plug flow in the initial stages of injection, with rapid transition into a primary breakup regime, transitioning to a finely atomised spray and subsequent vaporisation of the fuel. During closuring of the injector the spray collapses, with evidence of swirling breakup structures together with unstable ligaments of fuel breaking into large slow-moving droplets. This leads to sub-optimal combustion in the developing flame fronts established by the earlier, more fully-developed spray. The simulation results predict these observed phenomena, including injector surface wetting as a result of large slow-moving droplets and post-injection discharge of liquid fuel. This work suggests that post-injection discharges of fuel play a part in the mechanism of the initial formation, and subsequent accumulation of deposits on the exterior surface of the injector. For multiple injections, opening events are influenced by the dynamics of the previous injection closure; these phenomena have been investigated within the simulations
Anisotropic expansion of a thermal dipolar Bose gas
We report on the anisotropic expansion of ultracold bosonic dysprosium gases
at temperatures above quantum degeneracy and develop a quantitative theory to
describe this behavior. The theory expresses the post-expansion aspect ratio in
terms of temperature and microscopic collisional properties by incorporating
Hartree-Fock mean-field interactions, hydrodynamic effects, and
Bose-enhancement factors. Our results extend the utility of expansion imaging
by providing accurate thermometry for dipolar thermal Bose gases, reducing
error in expansion thermometry from tens of percent to only a few percent.
Furthermore, we present a simple method to determine scattering lengths in
dipolar gases, including near a Feshbach resonance, through observation of
thermal gas expansion.Comment: main text and supplement, 11 pages total, 4 figure
Excitation spectrum of bosons in a finite one-dimensional circular waveguide via the Bethe ansatz
The exactly solvable Lieb-Liniger model of interacting bosons in
one-dimension has attracted renewed interest as current experiments with
ultra-cold atoms begin to probe this regime. Here we numerically solve the
equations arising from the Bethe ansatz solution for the exact many-body wave
function in a finite-size system of up to twenty particles for attractive
interactions. We discuss the novel features of the solutions, and how they
deviate from the well-known string solutions [H. B. Thacker, Rev. Mod. Phys.\
\textbf{53}, 253 (1981)] at finite densities. We present excited state string
solutions in the limit of strong interactions and discuss their physical
interpretation, as well as the characteristics of the quantum phase transition
that occurs as a function of interaction strength in the mean-field limit.
Finally we compare our results to those of exact diagonalization of the
many-body Hamiltonian in a truncated basis. We also present excited state
solutions and the excitation spectrum for the repulsive 1D Bose gas on a ring.Comment: 13 pages, 12 figure
Low temperature expansion for the 3-d Ising Model
We compute the weak coupling expansion for the energy of the three
dimensional Ising model through 48 excited bonds. We also compute the
magnetization through 40 excited bonds. This was achieved via a recursive
enumeration of states of fixed energy on a set of finite lattices. We use a
linear combination of lattices with a generalization of helical boundary
conditions to eliminate finite volume effects.Comment: 10 pages, IASSNS-HEP-92/42, BNL-4767
Spatial nonlocal pair correlations in a repulsive 1D Bose gas
We analytically calculate the spatial nonlocal pair correlation function for
an interacting uniform 1D Bose gas at finite temperature and propose an
experimental method to measure nonlocal correlations. Our results span six
different physical realms, including the weakly and strongly interacting
regimes. We show explicitly that the characteristic correlation lengths are
given by one of four length scales: the thermal de Broglie wavelength, the mean
interparticle separation, the healing length, or the phase coherence length. In
all regimes, we identify the profound role of interactions and find that under
certain conditions the pair correlation may develop a global maximum at a
finite interparticle separation due to the competition between repulsive
interactions and thermal effects.Comment: Final published version, modified titl
- …