5,897 research outputs found

    The Socio-Economic Value of the Shark-Diving Industry in Fiji

    Get PDF
    Based on a survey of divers, dive operators, resort managers, estimates business revenues from shark diving and related expenditures by area; tax revenues; and economic benefit to local communities

    The effects of space radiation on a chemically modified graphite-epoxy composite material

    Get PDF
    The effects of the space environment on the engineering properties and chemistry of a chemically modified T300/934 graphite-epoxy composite system are characterized. The material was subjected to 1.0 x 10 to the 10th power rads of 1.0 MeV electron irradiation under vacuum to simulate 30 years in geosynchronous earth orbit. Monotonic tension tests were performed at room temperature (75 F/24 C) and elevated temperature (250 F/121 C) on 4-ply unidirectional laminates. From these tests, inplane engineering and strength properties (E sub 1, E sub 2, Nu sub 12, G sub 12, X sub T, Y sub T) were determined. Cyclic tests were also performed to characterize energy dissipation changes due to irradiation and elevated temperature. Large diameter graphite fibers were tested to determine the effects of radiation on their stiffness and strength. No significant changes were observed. Dynamic-mechanical analysis demonstrated that the glass transition temperature was reduced by 50 F(28 C) after irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated material. The chemical modification of the epoxy did not aid in producing a material which was more radiation resistant than the standard T300/934 graphite-epoxy system. Irradiation was found to cause crosslinking and chain scission in the polymer. The latter produced low molecular weight products which plasticize the material at elevated temperatures and cause apparent material stiffening at low stresses at room temperature

    Development of computer software to analyze entire LANDSAT scenes and to summarize classification results of variable-size polygons

    Get PDF
    The Forest Pest Management Division (FPMD) of the Pennsylvania Bureau of Forestry has the responsibility for conducting annual surveys of the State's forest lands to accurately detect, map, and appraise forest insect infestations. A standardized, timely, and cost-effective method of accurately surveying forests and their condition should enhance the probability of suppressing infestations. The repetitive and synoptic coverage provided by LANDSAT (formerly ERTS) makes such satellite-derived data potentially attractive as a survey medium for monitoring forest insect damage over large areas. Forest Pest Management Division personnel have expressed keen interest in LANDSAT data and have informally cooperated with NASA/Goddard Space Flight Center (GSFC) since 1976 in the development of techniques to facilitate their use. The results of this work indicate that it may be feasible to use LANDSAT digital data to conduct annual surveys of insect defoliation of hardwood forests

    Neutron spectroscopic factors of Ni isotopes from transfer reactions

    Full text link
    177 neutron spectroscopic factors for nickel isotopes have been extracted by performing a systematic analysis of the angular distributions measured from (d,p) transfer reactions. A subset of the extracted spectroscopic factors are compared to predictions of large-basis shell models in the full pf model space using the GXPF1A effective interaction, and the (f5/2, p3/2, p1/2, g9/2) model space using the JJ4PNA interaction. For ground states, the predicted spectroscopic factors using the GXPF1A effective interaction in the full pf model space agree very well with the experimental values, while predictions based on several other effective interactions and model spaces are about 30% higher than the experimental values. For low-energy excited states (<3.5 MeV), the agreement between the extracted spectroscopic factors and shell model calculations is not better than a factor of two.Comment: 18 pages, 4 figures, 2 tables. accepted for publication in PR

    Anisotropic expansion of a thermal dipolar Bose gas

    Full text link
    We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the post-expansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases, reducing error in expansion thermometry from tens of percent to only a few percent. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.Comment: main text and supplement, 11 pages total, 4 figure

    Excitation spectrum of bosons in a finite one-dimensional circular waveguide via the Bethe ansatz

    Get PDF
    The exactly solvable Lieb-Liniger model of interacting bosons in one-dimension has attracted renewed interest as current experiments with ultra-cold atoms begin to probe this regime. Here we numerically solve the equations arising from the Bethe ansatz solution for the exact many-body wave function in a finite-size system of up to twenty particles for attractive interactions. We discuss the novel features of the solutions, and how they deviate from the well-known string solutions [H. B. Thacker, Rev. Mod. Phys.\ \textbf{53}, 253 (1981)] at finite densities. We present excited state string solutions in the limit of strong interactions and discuss their physical interpretation, as well as the characteristics of the quantum phase transition that occurs as a function of interaction strength in the mean-field limit. Finally we compare our results to those of exact diagonalization of the many-body Hamiltonian in a truncated basis. We also present excited state solutions and the excitation spectrum for the repulsive 1D Bose gas on a ring.Comment: 13 pages, 12 figure

    Low temperature expansion for the 3-d Ising Model

    Full text link
    We compute the weak coupling expansion for the energy of the three dimensional Ising model through 48 excited bonds. We also compute the magnetization through 40 excited bonds. This was achieved via a recursive enumeration of states of fixed energy on a set of finite lattices. We use a linear combination of lattices with a generalization of helical boundary conditions to eliminate finite volume effects.Comment: 10 pages, IASSNS-HEP-92/42, BNL-4767

    Spatial nonlocal pair correlations in a repulsive 1D Bose gas

    Get PDF
    We analytically calculate the spatial nonlocal pair correlation function for an interacting uniform 1D Bose gas at finite temperature and propose an experimental method to measure nonlocal correlations. Our results span six different physical realms, including the weakly and strongly interacting regimes. We show explicitly that the characteristic correlation lengths are given by one of four length scales: the thermal de Broglie wavelength, the mean interparticle separation, the healing length, or the phase coherence length. In all regimes, we identify the profound role of interactions and find that under certain conditions the pair correlation may develop a global maximum at a finite interparticle separation due to the competition between repulsive interactions and thermal effects.Comment: Final published version, modified titl
    corecore