2,925 research outputs found
Spaceborne VHSIC multiprocessor system for AI applications
A multiprocessor system, under design for space-station applications, makes use of the latest generation symbolic processor and packaging technology. The result will be a compact, space-qualified system two to three orders of magnitude more powerful than present-day symbolic processing systems
Monotone Retracts and Some Characterizations of Dendrites
Let M be a metric continuum containing a fixed point p. The following conditions are shown to be equivalent. (i) M is a dendrite. (ii) Each subcontinuum of M is a monotone retract of M. (iii) M is arcwise connected and each subcontinuum of M containing p is a monotone retract of M
Virus Propagation in Multiple Profile Networks
Suppose we have a virus or one competing idea/product that propagates over a
multiple profile (e.g., social) network. Can we predict what proportion of the
network will actually get "infected" (e.g., spread the idea or buy the
competing product), when the nodes of the network appear to have different
sensitivity based on their profile? For example, if there are two profiles
and in a network and the nodes of profile
and profile are susceptible to a highly spreading
virus with probabilities and
respectively, what percentage of both profiles will actually get infected from
the virus at the end? To reverse the question, what are the necessary
conditions so that a predefined percentage of the network is infected? We
assume that nodes of different profiles can infect one another and we prove
that under realistic conditions, apart from the weak profile (great
sensitivity), the stronger profile (low sensitivity) will get infected as well.
First, we focus on cliques with the goal to provide exact theoretical results
as well as to get some intuition as to how a virus affects such a multiple
profile network. Then, we move to the theoretical analysis of arbitrary
networks. We provide bounds on certain properties of the network based on the
probabilities of infection of each node in it when it reaches the steady state.
Finally, we provide extensive experimental results that verify our theoretical
results and at the same time provide more insight on the problem
Genome-wide landscape of alternative splicing events in brachypodium distachyon
Recently, Brachypodium distachyon has emerged as a model plant for studying monocot grasses and cereal crops. Using assembled expressed transcript sequences and subsequent mapping to the corresponding genome, we identified 1219 alternative splicing (AS) events spanning across 2021 putatively assembled transcripts generated from 941 genes. Approximately, 6.3% of expressed genes are alternatively spliced in B. distachyon. We observed that a majority of the identified AS events were related to retained introns (55.5%), followed by alternative acceptor sites (16.7%).We also observed a low percentage of exon skipping (5.0%) and alternative donor site events (8.8%). The 'complex event' that consists of a combination of two or more basic splicing events accounted for ~14.0%. Comparative AS transcript analysis revealed 163 and 39 homologous pairs between B. distachyon and Oryza sativa and between B. distachyon and Arabidopsis thaliana, respectively. In all, we found 16 AS transcripts to be conserved in all 3 species. AS events and related putative assembled transcripts annotation can be systematically browsed at Plant Alternative Splicing Database (http://proteomics.ysu.edu/altsplice/plant/). © The Author 2012
- …