2,049 research outputs found

    A Search for Sub-millisecond Pulsations in Unidentified FIRST and NVSS Radio Sources

    Get PDF
    We have searched 92 unidentified sources from the FIRST and NVSS 1400 MHz radio survey catalogs for radio pulsations at 610 MHz. The selected radio sources are bright, have no identification with extragalactic objects, are point-like and are more than 5% linearly polarized. Our search was sensitive to sub-millisecond pulsations from pulsars with dispersion measures (DMs) less than 500 pc cm-3 in the absence of scattering. We have detected no pulsations from these sources and consider possible effects which might prevent detection. We conclude that as a population, these sources are unlikely to be pulsars.Comment: 8 pages, including 2 tables and 1 figure. Accepted for publication in A

    One blind and three targeted searches for (sub)millisecond pulsars

    Full text link
    We conducted one blind and three targeted searches for millisecond and submillisecond pulsars. The blind search was conducted within 3deg of the Galactic plane and at longitudes between 20 and 110deg. It takes 22073 pointings to cover this region, and 5487 different positions in the sky. The first targeted search was aimed at Galactic globular clusters, the second one at 24 bright polarized and pointlike radiosources with steep spectra, and the third at 65 faint polarized and pointlike radiosources. The observations were conducted at the large radiotelescope of Nancay Observatory, at a frequency near 1400 MHz. Two successive backends were used, first a VLBI S2 system, second a digital acquisition board and a PC with large storage capacity sampling the signal at 50 Mb/s on one bit, over a 24-MHz band and in one polarization. The bandwidth of acquisition of the second backend was later increased to 48 MHz and the sampling rate to 100 Mb/s. The survey used the three successive setups, with respective sensitivities of 3.5, 2.2, and 1.7 mJy. The targeted-search data were obtained with the third setup and reduced with a method based on the Hough transform, yielding a sensitivity of 0.9 mJy. The processing of the data was done in slightly differed time by soft-correlation in all cases. No new short-period millisecond pulsars were discovered in the different searches. To better understand the null result of the blind survey, we estimate the probability of detecting one or more short-period pulsars among a given Galactic population of synthetic pulsars with our setup: 25% for the actual incomplete survey and 79% if we had completed the whole survey with a uniform nominal sensitivity of 1.7 mJy. The alternative of surveying a smaller, presumably more densely populated, region with a higher sensitivity would have a low return and would be impractical at a transit instrument. (abridged)Comment: accepted for publication in Astronomy & Astrophysic

    Depolarization of Pulsar Radio Emission

    Get PDF
    We show that intensity dependent depolarization of single pulses (e.g., Xiluoris et al. 1994) may be due to the nonlinear decay of the "upper" ordinary mode into an unpolarized extraordinary mode and a backward propagating wave. The decay occurs in the innermost parts of the pulsar magnetosphere for obliquely propagating O waves.Comment: 6 pages, 1 postscript figur

    Observations of 20 millisecond pulsars in 47 Tucanae at 20 cm

    Get PDF
    We have used a new observing system on the Parkes radio telescope to carry out a series of pulsar observations of the globular cluster 47 Tucanae at 20-cm wavelength. We detected all 11 previously known pulsars, and have discovered nine others, all of which are millisecond pulsars in binary systems. We have searched the data for relatively short orbital period systems, and found one pulsar with an orbital period of 96 min, the shortest of any known radio pulsar. The increased rate of detections with the new system resulted in improved estimates of the flux density of the previously known pulsars, determination of the orbital parameters of one of them, and a coherent timing solution for another one. Five of the pulsars now known in 47 Tucanae have orbital periods of a few hours and implied companion masses of only ~ 0.03 Msun. Two of these are eclipsed at some orbital phases, while three are seen at all phases at 20 cm but not always at lower frequencies. Four and possibly six of the other binary systems have longer orbital periods and companion masses ~ 0.2 Msun, with at least two of them having relatively large orbital eccentricities. All 20 pulsars have rotation periods in the range 2-8 ms.Comment: 15 pages, 6 embedded EPS figures, to be published in The Astrophysical Journa

    A periodically active pulsar giving insight into magnetospheric physics

    Get PDF
    PSR B1931+24 (J1933+2421) behaves as an ordinary isolated radio pulsar during active phases that are 5-10 days long. However, the radio emission switches off in less than 10 seconds and remains undetectable for the next 25-35 days, then it switches on again. This pattern repeats quasi-periodically. The origin of this behaviour is unclear. Even more remarkably, the pulsar rotation slows down 50% faster when it is on than when it is off. This indicates a massive increase in magnetospheric currents when the pulsar switches on, proving that pulsar wind plays a substantial role in pulsar spin-down. This allows us, for the first time, to estimate the currents in a pulsar magnetospheric during the occurrence of radio emission.Comment: 12 pages, 2 figure

    Are Supershells Powered by Multiple Supernovae? Modeling the Radio Pulsar Population Produced by OB Associations

    Full text link
    Traditional searches for radio pulsars have targeted individual small regions such as supernova remnants or globular clusters, or have covered large contiguous regions of the sky. None of these searches has been specifically directed towards giant supershells, some of which are likely to have been produced by multiple supernova (SN) explosions from an OB association. Here we perform a Montecarlo simulation of the pulsar population associated with supershells powered by multiple SNe. We predict that several tens of radio pulsars could be detected with current instruments associated with the largest Galactic supershells (with kinetic energies >~ 10^{53} ergs), and a few pulsars with the smaller ones. We test these predictions for some of the supershells which lie in regions covered by past pulsar surveys. For the smaller supershells, our results are consistent with the few detected pulsars per bubble. For the giant supershell GSH 242-03+37, we find the multiple SN hypothesis inconsistent with current data at the 95% level. We stress the importance of undertaking deep pulsar surveys in correlation with supershells. Failure to detect any pulsar enhancement in the largest of them would put serious constraints on the multiple SN origin for them. Conversely, the discovery of the pulsar population associated with a supershell would allow a different/independent approach to the study of pulsar properties.Comment: accepted to ApJ; 17 pages, 2 figures, 1 tabl

    Farming for the patchy Anthropocene: the spatial imaginaries of regenerative agriculture

    Get PDF
    With its focus on the species level of the Anthropos, there is growing concern that the Anthropocene analytic lacks the conceptual nuance needed to grapple with the unevenly distributed harms and responsibilities tied up with issues of biodiversity loss, global warming, and land use change. Conceptual variants like the patchy Anthropocene have been proposed to better capture the justice implications of these socio-ecological crises, directing attention to their spatially ubiquitous yet context-specific character. The figure of the plantation has come to play an important role in this scholarship due to the contribution intensive agriculture had made to these interlinking crises. Through empirical study of the regenerative agricultural movement, this paper reflects on how regenerative farmers use different sites (fields, soils, livestock stomachs) to apprehend their agro-ethical responsibilities to more-than-human actors both near to and far from the landscapes they manage. Our aims here are two-fold. First, we provide a more affirmative account of agricultural management than is currently offered by plantation farming: a model of food production that is not just ‘in’ the Anthropocene, but ‘for’ it. Second, we contribute to ongoing discussions unfolding in the social sciences around the tools needed to conceptualise the interlinking spatial and justice aspects of the Anthropocene transition. By bringing the patchy analytic into conversation with more established geographic writing on scale, volume, and horizontal connections, we show the merit of juxtaposing multiple models of spatial relation as a way of gaining ethical and conceptual traction on complex socio-ecological issues. We argue that the ‘polymorphic’ spatial imaginaries of regenerative agriculturalists can offer some guidance on the tools needed to attend to the specificity of local Anthropocene outcomes in relation to socio-ecological forces actuating the world at much greater spatio-temporal scales
    • 

    corecore