95 research outputs found

    Quasiparticle properties in a density functional framework

    Get PDF
    We propose a framework to construct the ground-state energy and density matrix of an N-electron system by solving selfconsistently a set of single-particle equations. The method can be viewed as a non-trivial extension of the Kohn-Sham scheme (which is embedded as a special case). It is based on separating the Green's function into a quasi-particle part and a background part, and expressing only the background part as a functional of the density matrix. The calculated single-particle energies and wave functions have a clear physical interpretation as quasiparticle energies and orbitals.Comment: 12 pages, 1 figure, to be published in Phys. Rev.

    Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    Full text link
    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including the first fully three-dimensional electronic band structures calculated by the method.Comment: replacement: single spaced, included figures, added journal referenc

    Superconductivity in the two dimensional Hubbard Model.

    Full text link
    Quasiparticle bands of the two-dimensional Hubbard model are calculated using the Roth two-pole approximation to the one particle Green's function. Excellent agreement is obtained with recent Monte Carlo calculations, including an anomalous volume of the Fermi surface near half-filling, which can possibly be explained in terms of a breakdown of Fermi liquid theory. The calculated bands are very flat around the (pi,0) points of the Brillouin zone in agreement with photoemission measurements of cuprate superconductors. With doping there is a shift in spectral weight from the upper band to the lower band. The Roth method is extended to deal with superconductivity within a four-pole approximation allowing electron-hole mixing. It is shown that triplet p-wave pairing never occurs. Singlet d_{x^2-y^2}-wave pairing is strongly favoured and optimal doping occurs when the van Hove singularity, corresponding to the flat band part, lies at the Fermi level. Nearest neighbour antiferromagnetic correlations play an important role in flattening the bands near the Fermi level and in favouring superconductivity. However the mechanism for superconductivity is a local one, in contrast to spin fluctuation exchange models. For reasonable values of the hopping parameter the transition temperature T_c is in the range 10-100K. The optimum doping delta_c lies between 0.14 and 0.25, depending on the ratio U/t. The gap equation has a BCS-like form and (2*Delta_{max})/(kT_c) ~ 4.Comment: REVTeX, 35 pages, including 19 PostScript figures numbered 1a to 11. Uses epsf.sty (included). Everything in uuencoded gz-compressed .tar file, (self-unpacking, see header). Submitted to Phys. Rev. B (24-2-95

    Development of auditing in Malaysia: Legal, political and historical influences

    Get PDF
    This work investigates the role and contribution of external auditing as practised in the Malaysian society during the forty year period from independence in 1957 to just before the onset of the Asian Financial Crisis in 1997.It applies the political economic theory introduced by Tinker (1980) and refined by Cooper & Sherer (1984), which focuses on the social relations aspects of professional activity rather than economic forces alone.In a case study format where qualitative data was gathered mainly from primary and secondary source materials, the study found that the function of auditing in the Malaysian society in most cases is devoid of any essence of mission; instead it is created, shaped and transformed by the pressures which give rise to its development over time.The largely insignificant role that it serves is intertwined within the contexts in which it operates

    Mapping of the "intervention channels" as a part of the community diagnosis process of the Stockholm Cancer Prevention Program (SCPP)

    No full text
    The Stockholm Cancer Prevention Program is to our knowledge the first community intervention program in the world aiming of a reduction in the incidence of cancer. A community diagnosis model has been used in the planning. A thorough description of different organizations in the local communities of Stockholm has been made. A model for describing the organizations or collaborators has been worked out, including description of the organizations and its environment, objectives of activities, possible activities to reach the objectives, resources needed, incentives for collaborative partners, formative evaluation criteria and anticipated problems and solutions. The main method of description has been by use of keyperson interviews. This was found to be a good method to reach commitment to the program

    Assessment of Electron Propagator Methods for the Simulation of Vibrationally Resolved Valence and Core Photoionization Spectra

    No full text
    The analysis of photoelectron spectra is usually facilitated by quantum mechanical simulations. Because of the recent improvement of experimental techniques, the resolution of experimental spectra is rapidly increasing, and the inclusion of vibrational effects is usually mandatory to obtain a reliable reproduction of the spectra. With the aim of defining a robust computational protocol, a general time-independent formulation to compute different kinds of vibrationally resolved electronic spectra has been generalized to also support photoelectron spectroscopy. The electronic structure data underlying the simulation are computed using different electron propagator approaches. In addition to the more standard approaches, a new and robust implementation of the second-order self-energy approximation of the electron propagator based on a transition operator reference (TOEP2) is presented. To validate our implementation, a series of molecules has been used as test cases. The result of the simulations shows that, for ultraviolet photoionization spectra, the more accurate nondiagonal approaches are needed to obtain a reliable reproduction of vertical ionization energies but that diagonal approaches are sufficient for energy gradients and pole strengths. For X-ray photoelectron spectroscopy, the TOEP2 approach, besides being more efficient, is also the most accurate in the reproduction of both vertical ionization energies and vibrationally resolved bandshapes
    • …
    corecore