201 research outputs found

    Spin flip from dark to bright states in InP quantum dots

    Full text link
    We report measurements of the time for spin flip from dark (non-light emitting) exciton states in quantum dots to bright (light emitting) exciton states in InP quantum dots. Dark excitons are created by two-photon excitation by an ultrafast laser. The time for spin flip between dark and bright states is found to be approximately 200 ps, independent of density and temperature below 70 K. This is much shorter than observed in other quantum dot systems. The rate of decay of the luminescence intensity, approximately 300 ps, is not simply equal to the radiative decay rate from the bright states, because the rate of decay is limited by the rate of conversion from dark excitons into bright excitons. The dependence of the luminescence decay time on the spin flip time is a general effect that applies to many experiments.Comment: 3 figure

    Ensemble interactions in strained semiconductor quantum dots

    Get PDF
    Large variations in InxGa1-xAs quantum dot concentrations were obtained with simultaneous growths on vicinal GaAs [001] substrates with different surface step densities. It was found that decreasing dot-dot separation blueshifts all levels, narrows intersublevel transition energies, shortens luminescence decay times for excited states, and increases inhomogeneous photoluminescence broadening. These changes in optical properties are attributed to a progressive strain deformation of the confining potentials and to the increasing effects of positional disorder in denser dot ensembles

    Search for Anisotropy of Ultra-High Energy Cosmic Rays with the Telescope Array Experiment

    Get PDF
    We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events collected by the Telescope Array (TA) detector in the first 40 months of operation. Following earlier studies, we examine event sets with energy thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the events in right ascension and declination are compatible with an isotropic distribution in all three sets. We then compare with previously reported clustering of the UHECR events at small angular scales. No significant clustering is found in the TA data. We then check the events with E>57 EeV for correlations with nearby active galactic nuclei. No significant correlation is found. Finally, we examine all three sets for correlations with the large-scale structure of the Universe. We find that the two higher-energy sets are compatible with both an isotropic distribution and the hypothesis that UHECR sources follow the matter distribution of the Universe (the LSS hypothesis), while the event set with E>10 EeV is compatible with isotropy and is not compatible with the LSS hypothesis at 95% CL unless large deflection angles are also assumed. We show that accounting for UHECR deflections in a realistic model of the Galactic magnetic field can make this set compatible with the LSS hypothesis.Comment: 10 pages, 9 figure

    Real-Time Imaging of HIF-1α Stabilization and Degradation

    Get PDF
    HIF-1α is overexpressed in many human cancers compared to normal tissues due to the interaction of a multiplicity of factors and pathways that reflect specific genetic alterations and extracellular stimuli. We developed two HIF-1α chimeric reporter systems, HIF-1α/FLuc and HIF-1α(ΔODDD)/FLuc, to investigate the tightly controlled level of HIF-1α protein in normal (NIH3T3 and HEK293) and glioma (U87) cells. These reporter systems provided an opportunity to investigate the degradation of HIF-1α in different cell lines, both in culture and in xenografts. Using immunofluorescence microscopy, we observed different patterns of subcellular localization of HIF-1α/FLuc fusion protein between normal cells and cancer cells; similar differences were observed for HIF-1α in non-transduced, wild-type cells. A dynamic cytoplasmic-nuclear exchange of the fusion protein and HIF-1α was observed in NIH3T3 and HEK293 cells under different conditions (normoxia, CoCl2 treatment and hypoxia). In contrast, U87 cells showed a more persistent nuclear localization pattern that was less affected by different growing conditions. Employing a kinetic model for protein degradation, we were able to distinguish two components of HIF-1α/FLuc protein degradation and quantify the half-life of HIF-1α fusion proteins. The rapid clearance component (t1/2 ∼4–6 min) was abolished by the hypoxia-mimetic CoCl2, MG132 treatment and deletion of ODD domain, and reflects the oxygen/VHL-dependent degradation pathway. The slow clearance component (t1/2 ∼200 min) is consistent with other unidentified non-oxygen/VHL-dependent degradation pathways. Overall, the continuous bioluminescence readout of HIF-1α/FLuc stabilization in vitro and in vivo will facilitate the development and validation of therapeutics that affect the stability and accumulation of HIF-1α

    From cassava to gari: Mapping of quality characteristics and end-user preferences in Cameroon and Nigeria

    Get PDF
    User's preferences of cassava and cassava products along the value chain are supported by specific root quality characteristics that can be linked to root traits. Therefore, providing an evidence base of user preferred characteristics along the value chain, can help in the functional choice of cassava varieties. In this respect, the present paper presents the results from focus group discussions and individual interviews on user preferred quality characteristics of raw cassava roots and the derived product, gari, ‐ one of the major cassava products in Sub Saharan Africa ‐ in major production and consumption areas of Cameroon and Nigeria. Choice of cassava varieties for farming is mainly determined by the multiple end‐uses of the roots, their agricultural yield and the processing determinants of roots that support their major high‐quality characteristics: size, density, low water content, maturity, colour and safety. Processing of cassava roots into gari goes through different technological variants leading to a gari whose high‐quality characteristics are: dryness, colour, shiny/attractive appearance, uniform granules and taste. Eba, the major consumption form of gari in Cameroon and Nigeria is mainly characterized by its textural properties: smoothness, firmness, stickiness, elasticity, mouldability. Recommendations are made, suggesting that breeding will have to start evaluating cassava clones for brightness/shininess, as well as textural properties such as mouldability and elasticity of cassava food products, for the purpose of supporting decision‐making by breeders and the development of high‐throughput selection methods of cassava varieties. Women are identified as important beneficiaries of such initiatives giving their disadvantaged position and their prominent role in cassava processing and marketing of gari

    Upper limit on the flux of photons with energies above 10(19) eV using the Telescope Array surface detector

    Get PDF
    We search for ultra-high energy photons by analyzing geometrical properties of shower fronts of events registered by the Telescope Array surface detector. By making use of an event-by-event statistical method, we derive upper limits on the absolute flux of primary photons with energies above 1019, 1019.5, and 1020 eV based on the first three years of data takenopen4

    UHECR arrival directions in the latest data from the original Auger and TA surface detectors and nearby galaxies

    Get PDF
    The distribution of ultra-high-energy cosmic-ray arrival directions appears to be nearly isotropic except for a dipole moment of order 6×(E/10 EeV)6 \times (E/10~\mathrm{EeV}) per cent. Nonetheless, at the highest energies, as the number of possible candidate sources within the propagation horizon and the magnetic deflections both shrink, smaller-scale anisotropies might be expected to emerge. On the other hand, the flux suppression reduces the statistics available for searching for such anisotropies. In this work, we consider two different lists of candidate sources: a sample of nearby starburst galaxies and the 2MRS catalog tracing stellar mass within 250 Mpc. We combine surface-detector data collected at the Pierre Auger Observatory until 2020 and the Telescope Array until 2019, and use them to test models in which UHECRs comprise an isotropic background and a foreground originating from the candidate sources and randomly deflected by magnetic fields. The free parameters of these models are the energy threshold, the signal fraction, and the search angular scale. We find a correlation between the arrival directions of 11.8%3.1%+5.0%11.8\%_{-3.1\%}^{+5.0\%} of cosmic rays detected with E38 EeVE \ge 38~\mathrm{EeV} by Auger or with E49 EeVE \gtrsim 49~\mathrm{EeV} by TA and the position of nearby starburst galaxies on a 15.53.2+5.3{15.5^\circ}_{-3.2^\circ}^{+5.3^\circ} angular scale, with a 4.2σ post-trial significance, as well as a weaker correlation with the overall galaxy distribution

    UHECR arrival directions in the latest data from the original Auger and TA surface detectors and nearby galaxies

    Get PDF
    The distribution of ultra-high-energy cosmic-ray arrival directions appears to be nearly isotropic except for a dipole moment of order 6×(E/10 EeV)6 \times (E/10~\mathrm{EeV}) per cent. Nonetheless, at the highest energies, as the number of possible candidate sources within the propagation horizon and the magnetic deflections both shrink, smaller-scale anisotropies might be expected to emerge. On the other hand, the flux suppression reduces the statistics available for searching for such anisotropies. In this work, we consider two different lists of candidate sources: a sample of nearby starburst galaxies and the 2MRS catalog tracing stellar mass within 250 Mpc. We combine surface-detector data collected at the Pierre Auger Observatory until 2020 and the Telescope Array until 2019, and use them to test models in which UHECRs comprise an isotropic background and a foreground originating from the candidate sources and randomly deflected by magnetic fields. The free parameters of these models are the energy threshold, the signal fraction, and the search angular scale. We find a correlation between the arrival directions of 11.8%3.1%+5.0%11.8\%_{-3.1\%}^{+5.0\%} of cosmic rays detected with E38 EeVE \ge 38~\mathrm{EeV} by Auger or with E49 EeVE \gtrsim 49~\mathrm{EeV} by TA and the position of nearby starburst galaxies on a 15.53.2+5.3{15.5^\circ}_{-3.2^\circ}^{+5.3^\circ} angular scale, with a 4.2σ post-trial significance, as well as a weaker correlation with the overall galaxy distribution
    corecore