2,199 research outputs found

    Luminosity Dependent Evolution of Lyman Break Galaxies from redshift 5 to 3

    Get PDF
    In this contribution we briefly describe our recent results on the properties of Lyman break galaxies at z~5 obtained from deep and wide blank field surveys using Subaru telescope, and through the comparison with samples at lower redshift ranges we discuss the evolution of star-forming galaxies in the early universe.Comment: 2 pages, 1 figure, for the proceedings of the IAU Symposium 235, Galaxies Across the Hubble Time, J. Palous & F. Combes, ed

    Gravitational Wave Signals from Chaotic System: A Point Mass with A Disk

    Full text link
    We study gravitational waves from a particle moving around a system of a point mass with a disk in Newtonian gravitational theory. A particle motion in this system can be chaotic when the gravitational contribution from a surface density of a disk is comparable with that from a point mass. In such an orbit, we sometimes find that there appears a phase of the orbit in which particle motion becomes to be nearly regular (the so-called ``stagnant motion'') for a finite time interval between more strongly chaotic phases. To study how these different chaotic behaviours affect on observation of gravitational waves, we investigate a correlation of the particle motion and the waves. We find that such a difference in chaotic motions reflects on the wave forms and energy spectra. The character of the waves in the stagnant motion is quite different from that either in a regular motion or in a more strongly chaotic motion. This suggests that we may make a distinction between different chaotic behaviours of the orbit via the gravitational waves.Comment: Published in Phys.Rev.D76:024018,200

    Relativistic stars with purely toroidal magnetic fields

    Full text link
    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The master equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these master equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows ; (1) For the non-rotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass-shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.Comment: 13 figures, 7 tables, submitted to PR

    Raman and fluorescence contributions to resonant inelastic soft x-ray scattering on LaAlO3_3/SrTiO3_3 heterostructures

    Full text link
    We present a detailed study of the Ti 3dd carriers at the interface of LaAlO3_3/SrTiO3_3 heterostructures by high-resolution resonant inelastic soft x-ray scattering (RIXS), with special focus on the roles of overlayer thickness and oxygen vacancies. Our measurements show the existence of interfacial Ti 3dd electrons already below the critical thickness for conductivity and an increase of the total interface charge up to a LaAlO3_3 overlayer thickness of 6 unit cells before it levels out. By comparing stoichiometric and oxygen deficient samples we observe strong Ti 3dd charge carrier doping by oxygen vacancies. The RIXS data combined with photoelectron spectroscopy and transport measurements indicate the simultaneous presence of localized and itinerant charge carriers. However, it is demonstrated that the relative amount of localized and itinerant Ti 3d3d electrons in the ground state cannot be deduced from the relative intensities of the Raman and fluorescence peaks in excitation energy dependent RIXS measurements, in contrast to previous interpretations. Rather, we attribute the observation of either the Raman or the fluorescence signal to the spatial extension of the intermediate state reached in the RIXS excitation process.Comment: 9 pages, 6 figure

    Equilibrium Configurations of Strongly Magnetized Neutron Stars with Realistic Equations of State

    Full text link
    We investigate equilibrium sequences of magnetized rotating stars with four kinds of realistic equations of state (EOSs) of SLy (Douchin et al.), FPS (Pandharipande et al.), Shen (Shen et al.), and LS (Lattimer & Swesty). Employing the Tomimura-Eriguchi scheme to construct the equilibrium configurations. we study the basic physical properties of the sequences in the framework of Newton gravity. In addition we newly take into account a general relativistic effect to the magnetized rotating configurations. With these computations, we find that the properties of the Newtonian magnetized stars, e.g., structure of magnetic field, highly depends on the EOSs. The toroidal magnetic fields concentrate rather near the surface for Shen and LS EOSs than those for SLy and FPS EOSs. The poloidal fields are also affected by the toroidal configurations. Paying attention to the stiffness of the EOSs, we analyze this tendency in detail. In the general relativistic stars, we find that the difference due to the EOSs becomes small because all the employed EOSs become sufficiently stiff for the large maximum density, typically greater than 1015gcm−310^{15}\rm{g} \rm{cm}^{-3}. The maximum baryon mass of the magnetized stars with axis ratio q∼0.7q\sim 0.7 increases about up to twenty percents for that of spherical stars. We furthermore compute equilibrium sequences at finite temperature, which should serve as an initial condition for the hydrodynamic study of newly-born magnetars. Our results suggest that we may obtain information about the EOSs from the observation of the masses of magnetars.Comment: submitted to MNRA

    Gravitational Waves from Chaotic Dynamical System

    Full text link
    To investigate how chaos affects gravitational waves, we study the gravitational waves from a spinning test particle moving around a Kerr black hole, which is a typical chaotic system. To compare the result with those in non-chaotic dynamical system, we also analyze a spinless test particle, which orbit can be complicated in the Kerr back ground although the system is integrable. We estimate the emitted gravitational waves by the multipole expansion of a gravitational field. We find a striking difference in the energy spectra of the gravitational waves. The spectrum for a chaotic orbit of a spinning particle, contains various frequencies, while some characteristic frequencies appear in the case of a spinless particle.Comment: 8 pages, 13 figures. submitted to PR
    • …
    corecore