3,097 research outputs found

    Realizations of Differential Operators on Conic Manifolds with Boundary

    Full text link
    We study the closed extensions (realizations) of differential operators subject to homogeneous boundary conditions on weighted L_p-Sobolev spaces over a manifold with boundary and conical singularities. Under natural ellipticity conditions we determine the domains of the minimal and the maximal extension. We show that both are Fredholm operators and give a formula for the relative index.Comment: 41 pages, 1 figur

    Shedding light on a living lab: the CLEF NEWSREEL open recommendation platform

    Get PDF
    In the CLEF NEWSREEL lab, participants are invited to evaluate news recommendation techniques in real-time by providing news recommendations to actual users that visit commercial news portals to satisfy their information needs. A central role within this lab is the communication between participants and the users. This is enabled by The Open Recommendation Platform (ORP), a web-based platform which distributes users' impressions of news articles to the participants and returns their recommendations to the readers. In this demo, we illustrate the platform and show how requests are handled to provide relevant news articles in real-time

    On the Structure of the Observable Algebra of QCD on the Lattice

    Full text link
    The structure of the observable algebra OΛ{\mathfrak O}_{\Lambda} of lattice QCD in the Hamiltonian approach is investigated. As was shown earlier, OΛ{\mathfrak O}_{\Lambda} is isomorphic to the tensor product of a gluonic CC^{*}-subalgebra, built from gauge fields and a hadronic subalgebra constructed from gauge invariant combinations of quark fields. The gluonic component is isomorphic to a standard CCR algebra over the group manifold SU(3). The structure of the hadronic part, as presented in terms of a number of generators and relations, is studied in detail. It is shown that its irreducible representations are classified by triality. Using this, it is proved that the hadronic algebra is isomorphic to the commutant of the triality operator in the enveloping algebra of the Lie super algebra sl(1/n){\rm sl(1/n)} (factorized by a certain ideal).Comment: 33 page

    Simulating nonequilibrium quantum fields with stochastic quantization techniques

    Full text link
    We present lattice simulations of nonequilibrium quantum fields in Minkowskian space-time. Starting from a non-thermal initial state, the real-time quantum ensemble in 3+1 dimensions is constructed by a stochastic process in an additional (5th) ``Langevin-time''. For the example of a self-interacting scalar field we show how to resolve apparent unstable Langevin dynamics, and compare our quantum results with those obtained in classical field theory. Such a direct simulation method is crucial for our understanding of collision experiments of heavy nuclei or other nonequilibrium phenomena in strongly coupled quantum many-body systems.Comment: 4 pages, 4 figures, PRL version, minor change

    Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares

    Get PDF
    A control analysis and design framework is proposed for systems subject to parametric uncertainty. The underlying strategies are based on sum-of-squares (SOS) polynomial analysis and nonlinear optimization to design an optimally robust controller. The approach determines a maximum uncertainty range for which the closed-loop system satisfies a set of stability and performance requirements. These requirements, de ned as inequality constraints on several metrics, are restricted to polynomial functions of the uncertainty. To quantify robustness, SOS analysis is used to prove that the closed-loop system complies with the requirements for a given uncertainty range. The maximum uncertainty range, calculated by assessing a sequence of increasingly larger ranges, serves as a robustness metric for the closed-loop system. To optimize the control design, nonlinear optimization is used to enlarge the maximum uncertainty range by tuning the controller gains. Hence, the resulting controller is optimally robust to parametric uncertainty. This approach balances the robustness margins corresponding to each requirement in order to maximize the aggregate system robustness. The proposed framework is applied to a simple linear short-period aircraft model with uncertain aerodynamic coefficients

    Negative Giant Longitudinal Magnetoresistance in NiMnSb/InSb: An interface effect

    Full text link
    We report on the electrical and magneto-transport properties of the contact formed between polycrystalline NiMnSb thin films grown using pulsed laser deposition (PLD) and n-type degenerate InSb (100) substrates. A negative giant magnetoresistance (GMR) effect is observed when the external magnetic field is parallel to the surface of the film and to the current direction. We attribute the observed phenomenon to magnetic precipitates formed during the magnetic film deposition and confined to a narrow layer at the interface. The effect of these precipitates on the magnetoresistance depends on the thermal processing of the system.Comment: 14 pages, 4 figure

    Involution and Constrained Dynamics I: The Dirac Approach

    Full text link
    We study the theory of systems with constraints from the point of view of the formal theory of partial differential equations. For finite-dimensional systems we show that the Dirac algorithm completes the equations of motion to an involutive system. We discuss the implications of this identification for field theories and argue that the involution analysis is more general and flexible than the Dirac approach. We also derive intrinsic expressions for the number of degrees of freedom.Comment: 28 pages, latex, no figure

    Functional Integral Construction of the Thirring model: axioms verification and massless limit

    Get PDF
    We construct a QFT for the Thirring model for any value of the mass in a functional integral approach, by proving that a set of Grassmann integrals converges, as the cutoffs are removed and for a proper choice of the bare parameters, to a set of Schwinger functions verifying the Osterwalder-Schrader axioms. The corresponding Ward Identities have anomalies which are not linear in the coupling and which violate the anomaly non-renormalization property. Additional anomalies are present in the closed equation for the interacting propagator, obtained by combining a Schwinger-Dyson equation with Ward Identities.Comment: 55 pages, 9 figure

    Beyond complex Langevin equations II: a positive representation of Feynman path integrals directly in the Minkowski time

    Get PDF
    Recently found positive representation for an arbitrary complex, gaussian weight is used to construct a statistical formulation of gaussian path integrals directly in the Minkowski time. The positivity of Minkowski weights is achieved by doubling the number of real variables. The continuum limit of the new representation exists only if some of the additional couplings tend to infinity and are tuned in a specific way. The construction is then successfully applied to three quantum mechanical examples including a particle in a constant magnetic field -- a simplest prototype of a Wilson line. Further generalizations are shortly discussed and an intriguing interpretation of new variables is alluded to.Comment: 16 pages, 2 figures, references adde
    corecore