29 research outputs found

    Forestry for a low carbon future. Integrating forests and wood products in climate change strategies

    Get PDF
    Following the introduction, Chapter 2 provides an overview of mitigation in the forest sector, addressing the handling of forests under UNFCCC. Chapters 3 to 5 focus on forest-based mitigation options – afforestation, reforestation, REDD+ and forest management – and Chapters 6 and 7 focus on wood-product based options – wood energy and green building and furnishing. The publication describes these activities in the context of UNFCCC rules, assessing their mitigation potential and economic attrac tiveness as well as opportunities and challenges for implementation. Chapter 8 discusses the different considerations involved in choosing the right mix of options as well as some of the instruments and means for implementation. Chapter 8 also highlights the co-benefits generated by forest-based mitigation and emphasizes that economic assessment of mitigation options needs to take these benefits into account. The concluding chapter assesses national commitments under UNFCCC involving forest miti gation and summarizes the challenges and opportunities

    Identifying forest ecosystem regions for agricultural use and conservation

    Get PDF
    ABSTRACT Balancing agricultural needs with the need to protect biodiverse environments presents a challenge to forestry management. An imbalance in resource production and ecosystem regulation often leads to degradation or deforestation such as when excessive cultivation damages forest biodiversity. Lack of information on geospatial biodiversity may hamper forest ecosystems. In particular, this may be an issue in areas where there is a strong need to reassign land to food production. It is essential to identify and protect those parts of the forest that are key to its preservation. This paper presents a strategy for choosing suitable areas for agricultural management based on a geospatial variation of Shannon's vegetation diversity index (SHDI). This index offers a method for selecting areas with low levels of biodiversity and carbon stock accumulation ability, thereby reducing the negative environmental impact of converting forest land to agricultural use. The natural forest ecosystem of the controversial 1997 Ex-Mega Rice Project (EMRP) in Indonesia is used as an example. Results showed that the geospatial pattern of biodiversity can be accurately derived using kriging analysis and then effectively applied to the delineation of agricultural production areas using an ecological threshold of SHDI. A prediction model that integrates a number of species and families and average annual rainfall was developed by principal component regression (PCR) to obtain a geospatial distribution map of biodiversity. Species richness was found to be an appropriate indicator of SHDI and able to assist in the identification of areas for agricultural use and natural forest management

    In vivo pharmacokinetics of celecoxib loaded endcapped PCLA-PEG-PCLA thermogels in rats after subcutaneous administration

    No full text
    Injectable thermogels based on poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) containing an acetyl- or propyl endcap and loaded with celecoxib were developed for local drug release. The aim of this study was to determine the effects of the composition of the celecoxib/PCLA-PEG-PCLA formulation on their in vivo drug release characteristics. Furthermore, we want to obtain insight into the in vitro-in vivo correlation. Different formulations were injected subcutaneously in rats and blood samples were taken for a period of 8 weeks. Celecoxib half-life in blood increased from 5 h for the bolus injection of celecoxib to more than 10 days for the slowest releasing gel formulation. Sustained release of celecoxib was obtained for at least 8 weeks after subcutaneous administration. The release period was prolonged from 3 to 6-8 weeks by increasing the injected volume from 100 to 500 µL, which also led to higher serum concentrations in time. Propyl endcapping of the polymer also led to a prolonged release compared to the acetyl endcapped polymer (49 versus 21 days) and at equal injected dose of the drug in lower serum concentrations. Increasing the celecoxib loading from 10 mg/mL to 50 mg/mL surprisingly led to prolonged release (28 versus 56 days) as well as higher serum concentrations per time point, even when corrected for the higher dose applied. The in vivo release was about twice as fast compared to the in vitro release for all formulations. Imaging of organs of mice, harvested 15 weeks after subcutaneous injection with polymer solution loaded with infrared-780 labelled dye showed no accumulation in any of these harvested organs except for traces in the kidneys, indicating renal clearance. Due to its simplicity and versatility, this drug delivery system has great potential for designing an injectable to locally treat osteoarthritis, and to enable tuning the gel to meet patient-specific needs

    In vivo pharmacokinetics of celecoxib loaded endcapped PCLA-PEG-PCLA thermogels in rats after subcutaneous administration

    No full text
    Injectable thermogels based on poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) containing an acetyl- or propyl endcap and loaded with celecoxib were developed for local drug release. The aim of this study was to determine the effects of the composition of the celecoxib/PCLA-PEG-PCLA formulation on their in vivo drug release characteristics. Furthermore, we want to obtain insight into the in vitro-in vivo correlation. Different formulations were injected subcutaneously in rats and blood samples were taken for a period of 8 weeks. Celecoxib half-life in blood increased from 5 h for the bolus injection of celecoxib to more than 10 days for the slowest releasing gel formulation. Sustained release of celecoxib was obtained for at least 8 weeks after subcutaneous administration. The release period was prolonged from 3 to 6-8 weeks by increasing the injected volume from 100 to 500 µL, which also led to higher serum concentrations in time. Propyl endcapping of the polymer also led to a prolonged release compared to the acetyl endcapped polymer (49 versus 21 days) and at equal injected dose of the drug in lower serum concentrations. Increasing the celecoxib loading from 10 mg/mL to 50 mg/mL surprisingly led to prolonged release (28 versus 56 days) as well as higher serum concentrations per time point, even when corrected for the higher dose applied. The in vivo release was about twice as fast compared to the in vitro release for all formulations. Imaging of organs of mice, harvested 15 weeks after subcutaneous injection with polymer solution loaded with infrared-780 labelled dye showed no accumulation in any of these harvested organs except for traces in the kidneys, indicating renal clearance. Due to its simplicity and versatility, this drug delivery system has great potential for designing an injectable to locally treat osteoarthritis, and to enable tuning the gel to meet patient-specific needs

    In vivo pharmacokinetics of celecoxib loaded endcapped PCLA-PEG-PCLA thermogels in rats after subcutaneous administration

    No full text
    Injectable thermogels based on poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) containing an acetyl- or propyl endcap and loaded with celecoxib were developed for local drug release. The aim of this study was to determine the effects of the composition of the celecoxib/PCLA-PEG-PCLA formulation on their in vivo drug release characteristics. Furthermore, we want to obtain insight into the in vitro-in vivo correlation. Different formulations were injected subcutaneously in rats and blood samples were taken for a period of 8 weeks. Celecoxib half-life in blood increased from 5 h for the bolus injection of celecoxib to more than 10 days for the slowest releasing gel formulation. Sustained release of celecoxib was obtained for at least 8 weeks after subcutaneous administration. The release period was prolonged from 3 to 6-8 weeks by increasing the injected volume from 100 to 500 µL, which also led to higher serum concentrations in time. Propyl endcapping of the polymer also led to a prolonged release compared to the acetyl endcapped polymer (49 versus 21 days) and at equal injected dose of the drug in lower serum concentrations. Increasing the celecoxib loading from 10 mg/mL to 50 mg/mL surprisingly led to prolonged release (28 versus 56 days) as well as higher serum concentrations per time point, even when corrected for the higher dose applied. The in vivo release was about twice as fast compared to the in vitro release for all formulations. Imaging of organs of mice, harvested 15 weeks after subcutaneous injection with polymer solution loaded with infrared-780 labelled dye showed no accumulation in any of these harvested organs except for traces in the kidneys, indicating renal clearance. Due to its simplicity and versatility, this drug delivery system has great potential for designing an injectable to locally treat osteoarthritis, and to enable tuning the gel to meet patient-specific needs

    REDD payments as incentive for reducing forest loss

    No full text
    Strategies for reducing emissions from deforestation and forest degradation (REDD) could become an important part of a new agreement for climate change mitigation under the United Nations Framework Convention on Climate Change. We constructed a system dynamics model for a cocoa agroforest landscape in southwestern Ghana to explore whether REDD payments are likely to promote forest conservation and what socio-economic implications would be. Scenarios were constructed for business as usual (cocoa production at the expense of forest), for payments for avoided deforestation of old-growth forest only and for payments for avoided deforestation of all forests, including degraded forest. The results indicate that in the short term, REDD is likely to be preferred by farmers when the policy focuses on payments that halt the destruction of old-growth forests only. However, there is the risk that REDD contracts may be abandoned in the short term. The likeliness of farmers to opt for REDD is much lower when also avoiding deforestation of degraded forest since this land is needed for the expansion of cocoa production. Given that it is mainly the wealthier households that control the remaining forest outside the reserves, REDD payments may increase community differentiation, with negative consequences for REDD policies

    A crossed-beam experiment on intramultiplet mixing collisions with short-lived Ne** {(2p)5(3p)} atoms

    Get PDF
    We describe the design, operation, and calibration of a crossed-beam experiment for the study of intramultiplet mixing collisions of short-lived electronically excited Ne{(2p)5(3p)}≡{α} atoms with ground-state atoms/molecules. The excellent performance of almost 1 kHz/Å2 (number of counts per unit of inelastic cross section) enables us to measure, with good accuracy, absolute total Ne**-X cross sections Q‖Mk‖l←k, for the {α}k→{α}l transition. Here Mk is the magnetic quantum number of the electronic angular momentum J of the initial {α}k state with respect to the asymptotic relative velocity. The polarized {α}k state is produced with a polarized laser. Narrow-band interference filters are used to detect the fluorescence radiation from the short-lived {α}k and {α}l states. An extensive series of measurements has been undertaken to calibrate the experiment. These are related to, e.g., beam properties, the optical-pumping process, and the optical detection system. The basic principles of the collision experiment itself have been thoroughly examined as well. We discuss the kinds of experiments it is possible to perform. These have yielded absolute (within 30%) cross sections between 0.05 and 50 Å2. Very strong polarization effects have been observed, with 0.1≲Q‖0‖l←k/Q‖1‖l←k ≲10. The average collision energy has been varied between 50 and 250 meV (depending to some extent on the collision partner), by using a seeded primary beam and by manipulating the Newton diagram of primary- and secondary-beam velocity vectors. Time-of-flight measurements with a laser chopper have been performed as well. The wide range of Ne**-collision partners offers the option of studying intramultiplet mixing pure (He, Ne), and in conjunction with Penning ionization (noble gas atoms Ar, Kr, Xe) or even angular-momentum coupling and anisotropy effects (molecules, from H2 to CO2, N2O)

    Degradation, intra-articular retention and biocompatibility of monospheres composed of [PDLLA-PEG-PDLLA]-b-PLLA multi-block copolymers

    No full text
    In this study, we investigated the use of microspheres with a narrow particle size distribution (‘monospheres’) composed of biodegradable poly(DL-lactide)-PEG-poly(DL-lactide)-b-poly(L-lactide) multiblock copolymers that are potentially suitable for local sustained drug release in articular joints. Monospheres with sizes of 5, 15 and 30 μm and a narrow particle size distribution were prepared by a micro-sieve membrane emulsification process. During in vitro degradation, less crystallinity, higher swelling and accelerated mass loss during was observed with increasing the PEG content of the polymer. The monospheres were tested in both a small (mice/rat) and large animal model (horse). In vivo imaging after injection with fluorescent dye loaded microspheres in mice knees showed that monospheres of all sizes retained within the joint for at least 90 days, while the same dose of free dye redistributed to the whole body within the first day after intra-articular injection. Administration of monospheres in equine carpal joints caused a mild transient inflammatory response without any clinical signs and without degradation of the cartilage, as evidenced by the absence of degradation products of sulfated glycosaminoglycans or collagen type 2 in the synovial fluid. The excellent intra-articular biocompatibility was confirmed in rat knees, where μCT-imaging and histology showed neither changes in cartilage quality nor quantity. Given the good intra-articular retention and the excellent biocompatibility, these novel poly(DL-lactide)-PEG-poly(DL-lactide)-b-poly(L-lactide)-based monospheres can be considered a suitable platform for intra-articular drug delivery. Statement of Significance This paper demonstrates the great potential in intra-articular drug delivery of monodisperse biodegradable microspheres which were prepared using a new class of biodegradable multi-block copolymers and a unique membrane emulsification process allowing the preparation of microspheres with a narrow particle size distribution (monospheres) leading to multiple advantages like better injectability, enhanced reproducibility and predictability of the in vivo release kinetics. We report not only on the synthesis and preparation, but also in vitro characterization, followed by in vivo testing of intra-articular biocompatibility of the monospheres in both a small and a large animal model. The favourable intra-articular biocompatibility combined with the prolonged intra-articular retention (>90 days) makes these monospheres an interesting drug delivery platform. What should also be highlighted is the use of horses; a very accurate translational model for the human situation, making the results not only relevant for equine healthcare, but also for the development of novel human OA therapies
    corecore