1,084 research outputs found

    Solid Phase Micro Extraction: Potential for Organic Contamination Control for Planetary Protection of Life-Detection Missions to the Icy Moons of the Outer Solar System

    Get PDF
    Conclusively detecting, or ruling out the possibility of, life on the icy moons of the outer solar system will require spacecraft missions to undergo rigorous planetary protection and contamination control procedures to achieve extremely low levels of organic terrestrial contamination. Contamination control is necessary to avoid forward contamination of the body of interest and to avoid the detection of false positive signals which could either mask indigenous organic chemistry of interest or cause an astrobiological false alarm. Here we test a new method for rapidly and inexpensively assessing the organic cleanliness of spaceflight hardware surfaces using solid phase micro extraction (SPME) fibres to directly swab surfaces. The results suggest that the method is both time and cost efficient. The SPME-gas chromatography mass spectrometry (GC-MS) method is sensitive to common mid-weight, non-polar contaminant compounds, e.g. aliphatic and aromatic hydrocarbons, which are common contaminants in laboratory settings. While we demonstrate the potential of SPME for surface sampling, the GC-MS instrumentation restricts the SPME-GC-MS technique’s sensitivity to larger polar and non-volatile compounds. Although not used in this study, to increase the potential range of detectable compounds, SPME can also be used in conjunction with high performance liquid chromatography/liquid chromatography-mass spectrometry systems suitable for polar analytes [Kataoka et al., 2000]. Thus, our SPME method presents an opportunity to monitor organic contamination in a relatively rapid and routine way that produces information-rich data sets

    A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings

    Get PDF
    Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N=100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ~ exp(1.516 sqrt(N)), a substantial improvement over the exponential running time ~ exp(0.245 N) provided by the hitherto best known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.Comment: 5 pages, 3 figures. Version 2 has been substantially expanded. Version 3 shows that the worst-case running time is sub-exponential in the number of vertice

    Habitat‐dependent occupancy and movement in a migrant songbird highlights the importance of mangroves and forested lagoons in Panama and Colombia

    Get PDF
    Climate change is predicted to impact tropical mangrove forests due to decreased rainfall, sea‐level rise, and increased seasonality of flooding. Such changes are likely to influence habitat quality for migratory songbirds occupying mangrove wetlands during the tropical dry season. Overwintering habitat quality is known to be associated with fitness in migratory songbirds, yet studies have focused primarily on territorial species. Little is known about the ecology of nonterritorial species that may display more complex movement patterns within and among habitats of differing quality. In this study, we assess within‐season survival and movement at two spatio‐temporal scales of a nonterritorial overwintering bird, the prothonotary warbler (Protonotaria citrea), that depends on mangroves and tropical lowland forests. Specifically, we (a) estimated within‐patch survival and persistence over a six‐week period using radio‐tagged birds in central Panama and (b) modeled abundance and occupancy dynamics at survey points throughout eastern Panama and northern Colombia as the dry season progressed. We found that site persistence was highest in mangroves; however, the probability of survival did not differ among habitats. The probability of warbler occupancy increased with canopy cover, and wet habitats were least likely to experience local extinction as the dry season progressed. We also found that warbler abundance is highest in forests with the tallest canopies. This study is one of the first to demonstrate habitat‐dependent occupancy and movement in a nonterritorial overwintering migrant songbird, and our findings highlight the need to conserve intact, mature mangrove, and lowland forests

    Marketing a tourism industry in late stage decline: The case of the Isle of Man

    Get PDF
    Qualitative interviews in the Isle of Man uncovered local perceptions of a tourism industry in late stage decline. Social impacts of decline are pronounced including facilities loss, cultural changes and a heightening of perceived peripherality: which taken together undermine local identity. Tourists are welcomed as they help to affirm the pride residents have in their island in creating a more active atmosphere, provide social interaction opportunities and to combat negative stereotyping. Thus findings emphasise the diverse, unique and persistent benefits of tourism in the Isle of Man, despite its decline. Destination marketing recommendations are therefore made to better address the experiences and desires of communities experiencing decline

    Identifying Surrogates for Heart and Ipsilateral Lung Dose to Guide Field Placement and Treatment Modality Selection during Virtual Simulation of Breast Radiotherapy

    Get PDF
    AIMS: Virtual simulation (VSim) of tangential photon fields is a common method of field localisation for breast radiotherapy. Heart and ipsilateral lung dose is unknown until the dosimetric plan is produced. If heart and ipsilateral lung tolerance doses are exceeded, this can prolong the pre-treatment pathway, particularly if a change of technique is required. The aim of this study was to identify predictive surrogates for heart and ipsilateral lung dose during VSim to aid optimum field placement and treatment modality selection. MATERIALS AND METHODS: Computed tomography data from 50 patients referred for left breast/chest wall radiotherapy were retrospectively analysed (model-building cohort). The prescribed dose was 40.05 Gy in 15 fractions using a tangential photon technique. The heart and ipsilateral lung contours were duplicated, cropped to within the field borders and labelled heart-in-field (HIF) and ipsilateral lung-in-field (ILF). The percentage of HIF (%HIF) and ILF (%ILF) was calculated and correlated with mean heart dose (MHD) and volume of the ipsilateral lung receiving 18 Gy (V18Gy). Linear regression models were calculated. A validation cohort of 10 left- and 10 right-sided cases with an anterior supraclavicular fossa (SCF) field, and 10 left- and 10 right-sided cases including the internal mammary nodes using a wide tangential technique and anterior SCF field, tested the predictive model. Threshold values for %HIF and %ILF were calculated for clinically relevant MHD and ipsilateral lung V18Gy tolerance doses. RESULTS: For the model-building cohort, the median %HIF and MHD were 2.6 (0.4-16.7) and 2.3 (1.2-8) Gy. The median %ILF and ipsilateral lung V18Gy were 12.1 (2.8-33.6) and 12.6 (3.3-35) %. There was a statistically significant strong positive correlation of %HIF with MHD (r2 = 0.97, P < 0.0001) and of %ILF with ipsilateral lung V18Gy (r2 = 0.99, P < 0.0001). For the validation cohort, the median %HIF and MHD were 3.9 (0.6-8) and 2.5 (1.4-4.7) Gy. The median %ILF and ipsilateral lung V18Gy were 20.1 (12.4-32.0) and 20.9 (12.4-34.4) %. The validation cohort confirmed that %HIF and %ILF continue to be predictive surrogates for heart and ipsilateral lung dose during VSim of left- and right-sided cases when including the SCF ± internal mammary nodes with a three-field photon technique. DISCUSSION: The ability to VSim breast radiotherapy (±nodal targets) and accurately predict the heart and ipsilateral lung doses on the dosimetric plan will ensure that tolerance doses are not exceeded, and identify early in the pre-treatment pathway those cases where alternative techniques or modalities should be considered

    Solid-State Molecular Organometallic Catalysis in Gas/Solid Flow (Flow-SMOM) as Demonstrated by Efficient Room Temperature and Pressure 1-Butene Isomerization

    Get PDF
    The use of solid-state molecular organometallic chemistry (SMOM-chem) to promote the efficient double bond isomerization of 1-butene to 2-butenes under flow-reactor conditions is reported. Single crystalline catalysts based upon the σ-alkane complexes [Rh(R2PCH2CH2PR2)(η2η2-NBA)][BArF4] (R = Cy, tBu; NBA = norbornane; ArF = 3,5-(CF3)2C6H3) are prepared by hydrogenation of a norbornadiene precursor. For the tBu-substituted system this results in the loss of long-range order, which can be re-established by addition of 1-butene to the material to form a mixture of [Rh(tBu2PCH2CH2PtBu2)(cis-2-butene)][BArF4] and [Rh(tBu2PCH2CH2PtBu2)(1-butene)][BArF4], in an order/disorder/order phase change. Deployment under flow-reactor conditions results in very different on-stream stabilities. With R = Cy rapid deactivation (3 h) to the butadiene complex occurs, [Rh(Cy2PCH2CH2PCy2)(butadiene)][BArF4], which can be reactivated by simple addition of H2. While the equivalent butadiene complex does not form with R = tBu at 298 K and on-stream conversion is retained up to 90 h, deactivation is suggested to occur via loss of crystallinity of the SMOM catalyst. Both systems operate under the industrially relevant conditions of an isobutene co-feed. cis:trans selectivites for 2-butene are biased in favor of cis for the tBu system and are more leveled for Cy

    Cone-Beam Computed Tomography and Deformable Registration-Based “Dose of the Day” Calculations for Adaptive Proton Therapy

    Get PDF
    Purpose: The aim of this work was to evaluate the feasibility of cone-beam computed tomography (CBCT) and deformable image registration (DIR)–based ‘‘dose of the day’’ calculations for adaptive proton therapy. Methods: Intensity-modulated radiation therapy (IMRT) and proton therapy plans were designed for 3 head and neck patients that required replanning, and hence had a replan computed tomography (CT). Proton plans were generated for different beam arrangements and optimizations: intensity modulated proton therapy and single-field uniform dose. We used an in-house DIR software implemented at our institution to generate a deformed CT, by warping the planning CT onto the daily CBCT. This CBCT had a similar patient geometry to the replanned CT. Dose distributions on the replanned CT were considered the gold standard for ‘‘dose of the day’’ calculations, and were compared with doses on deformed CT (our method) and directly on the calibrated CBCT and rigidly aligned planning CT (alternative methods) in terms of dose difference (DD), by calculating the percentage of voxels whose DD was smaller than 2% of the prescribed dose (DD2%-pp) and the root mean square of the DD distribution (DDRMS). Results: Using a deformed CT, the DD2%-pp within the CBCT imaging volume was 93.2% 6 0.7% for IMRT, and 87% 6 3% for proton plans. In a region of higher dose gradient, we found that although DD2%-pp was 94.3% 6 0.2% for IMRT, in proton plans, it dropped to 74% 6 4%. A larger number of treatment beams and single-field uniform dose optimization appear to make the proton plans less sensitive to DIR errors. For example, within the treated volume, the DDRMS was reduced from 2.6% 6 0.6% of the prescribed doseto 1.0% 6 1.3% ofthe prescribed dose when using single-field uniform dose optimization. Conclusions: Promising results were found for DIR- and CBCT-based proton dose calculations. Proton dose calculations were, however, more sensitive to registration errors than IMRT doses were, particularly in high dose gradient regions
    corecore