223,861 research outputs found

    A Theory of Gamma-Ray Bursts

    Get PDF
    We present a specific scenario for the link between GRB and hypernovae, based on Blandford-Znajek extraction of black-hole spin energy. Such a mechanism requires a high angular momentum in the progenitor object. The observed association of gamma-ray bursts with type Ibc supernovae leads us to consider massive helium stars that form black holes at the end of their lives as progenitors. We combine the numerical work of MacFadyen & Woosley with analytic calculations, to show that about 1E53 erg each are available to drive the fast GRB ejecta and the supernova. The GRB ejecta are driven by the power output through the open field lines, whereas the supernova is powered by closed filed lines and jet shocks. We also present a much simplified approximate derivation of these energetics. Helium stars that leave massive black-hole remnants in special ways, namely via soft X-ray transients or very massive WNL stars. Since binaries naturally have high angular momentum, we propose a link between black-hole transients and gamma-ray bursts. Recent observations of one such transient, GRO J1655-40/Nova Scorpii 1994, explicitly support this connection: its high space velocity indicates that substantial mass was ejected in the formation of the black hole, and the overabundance of alpha-nuclei, especially sulphur, indicates that the explosion energy was extreme, as in SN 1998bw/GRB 980425. (abstract shortened)Comment: 32 pages, 8 figures, accepted for publication in New Astronom

    A finite difference solution for the cylindrical expansion of a gas cloud into vacuum

    Get PDF
    Finite difference method for solution of cylindrical expansion of gas cloud into vacuu

    Momentum-space electronic structures and charge orders of high-temperature superconductors Ca2-xNaxCuO2Cl2 and Bi2Sr2CaCu2O8+delta

    Full text link
    We study the electronic structure of Ca2-xNaxCuO2Cl2 and Bi2Sr2CaCu2O8+d samples in a wide range of doping, using angle-resolved photoemission spectroscopy, with emphasis on on the Fermi surface (FS) in the near anti-nodal region. The "nesting wave vector", i.e., the wave vector that connects two nearly flat pieces of the Fermi surface in the anti-nodal region, reveals a universal monotonic decrease in magnitude as a function of doping. Comparing our results to the charge order recently observed by scanning tunneling spectroscopy (STS), we conclude that the FS nesting and the charge order pattern seen in STS do not have a direct relationship. Therefore,the charge order likely arises due to strong correlation physics rather than FS nesting physics.Comment: 6 pages, 4 figure

    Radio/X-ray Offsets of Large Scale Jets Caused by Synchrotron Time Lags

    Get PDF
    In the internal shock scenario, we argue that electrons in most kpc (or even larger) scale jets can be accelerated to energies high enough to emit synchrotron X-rays, if shocks exist on these scales. These high energy electrons emit synchrotron radiation at high frequencies and cool as they propagate downstream along the jet, emitting at progressively lower frequencies and resulting in time lags and hence radio/X-ray (and optical/X-ray if the optical knot is detectable) offsets at bright knots, with the centroids of X-ray knots being closer to the core. Taking into account strong effects of jet expansion, the behaviour of radio/X-ray and optical/X-ray offsets at bright knots in M87, Cen A, 3C 66B, 3C 31, 3C 273, and PKS 1127-145 is consistent with that of synchrotron time lags due to radiative losses. This suggests that the large scale X-ray and optical jets in these sources are due to synchrotron emission.Comment: 4 pages, Accepted for publication in ApJ Letter

    Zero Cosmological Constant and Nonzero Dark Energy from Holographic Principle

    Full text link
    It is shown that the first law of thermodynamics and the holographic principle applied to an arbitrary large cosmic causal horizon naturally demand the zero cosmological constant and non-zero dynamical dark energy in the form of the holographic dark energy. Semiclassical analysis shows that the holographic dark energy has a parameter d=1d=1 and an equation of state comparable to current observational data, if the entropy of the horizon saturates the Bekenstein-Hawking bound. This result indicates that quantum field theory should be modified at large scale to explain dark energy. The relations among dark energy, quantum vacuum energy and entropic gravity are also discussed.Comment: Revtex 7 pages 2 fig
    • …
    corecore