22,466 research outputs found

    Adaptive medium access control for VoIP services in IEEE 802.11 WLANs

    Get PDF
    Abstract- Voice over Internet Protocol (VoIP) is an important service with strict Quality-of-Service (QoS) requirements in Wireless Local Area Networks (WLANs). The popular Distributed Coordination Function (DCF) of IEEE 802.11 Medium Access Control (MAC) protocol adopts a Binary Exponential Back-off (BEB) procedure to reduce the packet collision probability in WLANs. In DCF, the size of contention window is doubled upon a collision regardless of the network loads. This paper presents an adaptive MAC scheme to improve the QoS of VoIP in WLANs. This scheme applies a threshold of the collision rate to switch between two different functions for increasing the size of contention window based on the status of network loads. The performance of this scheme is investigated and compared to the original DCF using the network simulator NS-2. The performance results reveal that the adaptive scheme is able to achieve the higher throughput and medium utilization as well as lower access delay and packet loss probability than the original DCF

    Feedback local optimality principle applied to rocket vertical landing VTVL

    Get PDF
    Vertical landing is becoming popular in the last fifteen years, a technology known under the acronym VTVL, Vertical Takeoff and Vertical Landing [1,2]. The interest in such landing technology is dictated by possible cost reductions [3,4], that impose spaceship’s recycling. The rockets are not generally de- signed to perform landing operations, rather their design is aimed at takeoff operations, guaranteeing a very high forward acceleration to gain the velocity needed to escape the gravitational force. In this paper a new control method based on Feedback Local Optimality Principle, named FLOP is applied to the rocket landing problem. The FLOP belongs to a special class of optimal controllers, developed by the mechatronic and vehicle dynamics lab of Sapienza, named Variational Feedback Controllers - VFC, that are part of an ongoing research and are recently applied in different field: nonlinear system [5], marine and terrestrial autonomous vehicles [6,7,8], multi agents interactions and vibration control [9, 10]. The paper is devoted to show the robustness of the nonlinear controlled system, comparing the performances with the LQR, one of the most acknowledged methods in optimal control

    Method and apparatus for using magneto-acoustic remanence to determine embrittlement

    Get PDF
    A method and apparatus for testing steel components for temperature embrittlement uses magneto-acoustic emission to nondestructively evaluate the component are presented. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an AC current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a DC current to the electromagnets and then by turning the magnets off and observing the residual magnetic induction

    Pseudospin Magnetism in Graphene

    Full text link
    We predict that neutral graphene bilayers are pseudospin magnets in which the charge density-contribution from each valley and spin spontaneously shifts to one of the two layers. The band structure of this system is characterized by a momentum-space vortex which is responsible for unusual competition between band and kinetic energies leading to symmetry breaking in the vortex core. We discuss the possibility of realizing a pseudospin version of ferromagnetic metal spintronics in graphene bilayers based on hysteresis associated with this broken symmetry.Comment: 5 pages, 4 figures; added figure 1, modified introduction and discussion; updated reference

    Scattered light mapping of protoplanetary disks

    Full text link
    High-contrast scattered light observations have revealed the surface morphology of several dozens of protoplanetary disks at optical and near-infrared wavelengths. Inclined disks offer the opportunity to measure part of the phase function of the dust grains that reside in the disk surface which is essential for our understanding of protoplanetary dust properties and the early stages of planet formation. We aim to construct a method which takes into account how the flaring shape of the scattering surface of an (optically thick) protoplanetary disk projects onto the image plane of the observer. This allows us to map physical quantities (scattering radius and scattering angle) onto scattered light images and retrieve stellar irradiation corrected (r^2-scaled) images and dust phase functions. We apply the method on archival polarized intensity images of the protoplanetary disk around HD 100546 that were obtained with VLT/SPHERE in R'-band and VLT/NACO in H- and Ks-band. The brightest side of the r^2-scaled R'-band polarized intensity image of HD 100546 changes from the far to the near side of the disk when a flaring instead of a geometrically flat disk surface is used for the r^2-scaling. The decrease in polarized surface brightness in the scattering angle range of ~40-70 deg is likely a result of the dust phase function and degree of polarization which peak in different scattering angle regimes. The derived phase functions show part of a forward scattering peak which indicates that large, aggregate dust grains dominate the scattering opacity in the disk surface. Projection effects of a protoplanetary disk surface need to be taken into account to correctly interpret scattered light images. Applying the correct scaling for the correction of stellar irradiation is crucial for the interpretation of the images and the derivation of the dust properties in the disk surface layer.Comment: Accepted for publication in A&A, 6 pages, 3 figure

    Squeezed-state generation in optical bistability

    Get PDF
    Experiments to generate squeezed states of light are described for a collection of two-level atoms within a high-finesse cavity. The investigation is conducted in a regime for which the weak-field coupling of atoms to the cavity mode produces a splitting in the normal mode structure of the atom-field system that is large compared with the atomic linewidth. Reductions in photocurrent noise of 30% (-1.55 dB) below the noise level set by the vacuum state of the field are observed in a balanced homodyne detector. A degree of squeezing of approximately 50% is inferred for the field state in the absence of propagation and detection losses. The observed spectrum of squeezing extends over a very broad range of frequencies (~±75 MHz), with the frequency of best squeezing corresponding to an offset from the optical carrier given by the normal mode splitting

    The D0 same-charge dimuon asymmetry and possibile new CP violation sources in the Bs−BˉsB_s-\bar{B}_s system

    Full text link
    Recently, the D0 collaboration reported a large CP violation in the same-sign dimuon charge asymmetry which has the 3.2σ3.2 \sigma deviation from the value estimated in the Standard Model. In this paper, several new physics models are considered: the MSSM, two Higgs doublet model, the recent dodeca model, and a new Z′Z' model. Generally, it is hard to achieve such a large CP violation consistently with other experimental constraints. We find that a scheme with extra non-anomalous U(1)′' gauge symmetry is barely consistent. In general, the extra Z′Z' gauge boson induces the flavor changing neutral current interactions at tree level, which is the basic reason allowing a large new physics CP violation. To preserve the U(1)′' symmetry at high energy, SU(2)L_L singlet exotic heavy quarks of mass above 1 TeV and the Standard Model gauge singlet scalars are introduced.Comment: 12 pages, 13 figure

    Optical and transport gaps in gated bilayer graphene

    Full text link
    We discuss the effect of disorder on the band gap measured in bilayer graphene in optical and transport experiments. By calculating the optical conductivity and density of states using a microscopic model in the presence of disorder, we demonstrate that the gap associated with transport experiments is smaller than that associated with optical experiments. Intrinsic bilayer graphene has an optical conductivity in which the energy of the peaks associated with the interband transition are very robust against disorder and thus provide an estimate of the band gap. In contrast, extraction of the band gap from the optical conductivity of extrinsic bilayer graphene is almost impossible for significant levels of disorder due to the ambiguity of the transition peaks. The density of states contains an upper bound on the gap measured in transport experiments, and disorder has the effect of reducing this gap which explains why these experiments have so far been unable to replicate the large band gaps seen in optical measurements.Comment: 5 pages, 5 figures, RevTeX. Published versio

    Top quark forward-backward asymmetry and charge asymmetry in left-right twin Higgs model

    Full text link
    In order to explain the Tevatron anomaly of the top quark forward-backward asymmetry AFBtA_{FB}^t in the left-right twin Higgs model, we choose to give up the lightest neutral particle of h^\hat{h} field as a stable dark matter candidate. Then a new Yukawa interaction for h^\hat{h} is allowed, which can be free from the constraint of same-sign top pair production and contribute sizably to AFBtA_{FB}^t. Considering the constraints from the production rates of the top pair (ttˉt\bar t), the top decay rates and ttˉt\bar{t} invariant mass distribution, we find that this model with such new Yukawa interaction can explain AFBtA_{FB}^t measured at the Tevatron while satisfying the charge asymmetry ACtA_{C}^t measured at the LHC.Moreover, this model predicts a strongly correlation between ACtA_{C}^t at the LHC and AFBtA_{FB}^t at the Tevatron, i.e., ACtA_{C}^t increases as AFBtA_{FB}^t increases.Comment: 17 pages, 9 figures; matches the published versio
    • …
    corecore