78 research outputs found

    Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this recordNitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed into the Earth's early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun - so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth's magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N 2 , CO 2 and CH 4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.We thank three referees for constructive suggestions that improved the manuscript. This work was supported by NASA GSFC Science Task Group 263 funds. V. Airapetian performed the part of this work while staying at ELSI/Tokyo Tech

    GaN-Based Detector Enabling Technology for Next Generation Ultraviolet Planetary Missions

    Get PDF
    The ternary alloy AlN-GaN-InN system provides several distinct advantages for the development of UV detectors for future planetary missions. First, (InN), (GaN) and (AlN) have direct bandgaps 0.8, 3.4 and 6.2 eV, respectively, with corresponding wavelength cutoffs of 1550 nm, 365 nm and 200 nm. Since they are miscible with each other, these nitrides form complete series of indium gallium nitride (In(sub l-x)Ga(sub x)N) and aluminum gallium nitride (Al(sub l-x)Ga(sub x)N) alloys thus allowing the development of detectors with a wavelength cut-off anywhere in this range. For the 2S0-365 nm spectral wavelength range AlGaN detectors can be designed to give a 1000x solar radiation rejection at cut-off wavelength of 325 nm, than can be achieved with Si based detectors. For tailored wavelength cut-offs in the 365-4S0 nm range, InGaN based detectors can be fabricated, which still give 20-40x better solar radiation rejection than Si based detectors. This reduced need for blocking filters greatly increases the Detective Quantum efficiency (DQE) and simplifies the instrument's optical systems. Second, the wide direct bandgap reduces the thermally generated dark current to levels allowing many observations to be performed at room temperature. Third, compared to narrow bandgap materials, wide bandgap semiconductors are significantly more radiation tolerant. Finally, with the use of an (AI, In)GaN array, the overall system cost is reduced by eliminating stringent Si CCD cooling systems. Compared to silicon, GaN based detectors have superior QE based on a direct bandgap and longer absorption lengths in the UV

    Life Beyond the Solar System: Space Weather and Its Impact on Habitable Worlds

    Get PDF
    The search of life in the Universe is a fundamental problem of astrobiology and a major priority for NASA. A key area of major progress since the NASA Astrobiology Strategy 2015 (NAS15) has been a shift from the exoplanet discovery phase to a phase of characterization and modeling of the physics and chemistry of exoplanetary atmospheres, and the development of observational strategies for the search for life in the Universe by combining expertise from four NASA science disciplines including heliophysics, astrophysics, planetary science and Earth science. The NASA Nexus for Exoplanetary System Science (NExSS) has provided an efficient environment for such interdisciplinary studies. Solar flares, coronal mass ejections and solar energetic particles produce disturbances in interplanetary space collectively referred to as space weather, which interacts with the Earth upper atmosphere and causes dramatic impact on space and ground-based technological systems. Exoplanets within close in habitable zones around M dwarfs and other active stars are exposed to extreme ionizing radiation fluxes, thus making exoplanetary space weather (ESW) effects a crucial factor of habitability. In this paper, we describe the recent developments and provide recommendations in this interdisciplinary effort with the focus on the impacts of ESW on habitability, and the prospects for future progress in searching for signs of life in the Universe as the outcome of the NExSS workshop held in Nov 29 - Dec 2, 2016, New Orleans, LA. This is one of five Life Beyond the Solar System white papers submitted by NExSS to the National Academy of Sciences in support of the Astrobiology Science Strategy for the Search for Life in the Universe.Comment: 5 pages, the white paper was submitted to the National Academy of Sciences in support of the Astrobiology Science Strategy for the Search for Life in the Univers

    Demonstration of an off-axis parabolic receiver for near-range retrieval of lidar ozone profiles

    Get PDF
    During the 2017 Ozone Water Land Environmental Transition Study (OWLETS), the Langley mobile ozone lidar system utilized a new small diameter receiver to improve the retrieval of near-surface signals from 0.1 to 1&thinsp;km in altitude. This new receiver utilizes a single 90&thinsp;∘ fiber-coupled, off-axis parabolic mirror resulting in a compact form that is easy to align. The single reflective surface offers the opportunity to easily expand its use to multiple wavelengths for additional measurement channels such as visible wavelength aerosol measurements. Detailed results compare the performance of the receiver to both ozonesonde and in situ measurements from a UAV platform, validating the performance of the near-surface ozone retrievals. Absolute O3 differences averaged 7&thinsp;% between lidar and ozonesonde data from 0.1 to 1.0&thinsp;km and yielded a 2.3&thinsp;% high bias in the lidar data, well within the uncertainty of the sonde measurements. Conversely, lidar O3 measurements from 0.1 to 0.2&thinsp;km averaged 10.5&thinsp;% lower than coincident UAV O3. A more detailed study under more stable atmospheric conditions would be necessary to resolve the residual instrument differences reported in this work. Nevertheless, this unique added capability is a significant improvement allowing for near-surface observation of ozone.</p

    Transmission spectrum of Venus as a transiting exoplanet

    Full text link
    On 5-6 June 2012, Venus will be transiting the Sun for the last time before 2117. This event is an unique opportunity to assess the feasibility of the atmospheric characterisation of Earth-size exoplanets near the habitable zone with the transmission spectroscopy technique and provide an invaluable proxy for the atmosphere of such a planet. In this letter, we provide a theoretical transmission spectrum of the atmosphere of Venus that could be tested with spectroscopic observations during the 2012 transit. This is done using radiative transfer across Venus' atmosphere, with inputs from in-situ missions such as Venus Express and theoretical models. The transmission spectrum covers a range of 0.1-5 {\mu}m and probes the limb between 70 and 150 km in altitude. It is dominated in UV by carbon dioxide absorption producing a broad transit signal of ~20 ppm as seen from Earth, and from 0.2 to 2.7 {\mu}m by Mie extinction (~5 ppm at 0.8 {\mu}m) caused by droplets of sulfuric acid composing an upper haze layer above the main deck of clouds. These features are not expected for a terrestrial exoplanet and could help discriminating an Earth-like habitable world from a cytherean planet.Comment: 4 pages, 3 figures, 1 table. Figure 3 and Table 1 will be only available on-line. Table 1 will be fully available at the CDS. Accepted for publication in Astronomy and Astrophysics (Letter

    TOLNet validation of satellite ozone profiles in the troposphere: impact of retrieval wavelengths

    Get PDF
    The Tropospheric Ozone Lidar Network (TOLNet) was used to validate retrievals of ozone (O3) profiles in the troposphere from the TROPOspheric Monitoring Instrument (TROPOMI) ultraviolet (UV), Cross-track Infrared Sounder (CrIS) infrared (IR), and a combined UV + IR wavelength retrieval from TROPOMI/CrIS. Observations from six separate ground-based lidar systems and various locations of ozonesondes distributed throughout North America and in the Netherlands were used to quantify systematic bias and random errors for each satellite retrieval. Furthermore, TOLNet data were used to intercompare idealized UV, IR, and UV + IR convolved lidar profiles of O3 in the troposphere during case studies representative of high-O3 events. This study shows that the improved sensitivity and vertical resolution in UV + IR retrievals in the middle- and upper-troposphere resulted in tropospheric degree of freedom (DOF) values ∼ 33 % higher compared to UV- and IR-only retrievals. The increased DOFs in the UV + IR retrievals allowed for improved reproduction of mid- and upper-tropospheric O3 enhancements and, to a lesser degree, near-surface pollution enhancements compared to single-wavelength satellite products. The validation of O3 profiles in the troposphere retrieved with the UV-only, IR-only, and UV + IR Tikhonov regularised Ozone Profile retrievAl with SCIATRAN (TOPAS) algorithm developed at the Institute for Environmental Physics, University of Bremen, demonstrated the utility of using TOLNet as a satellite evaluation data set. TOPAS UV-only, IR-only, and UV + IR wavelength retrievals had systematic biases, quantified with normalized mean bias, throughout the troposphere of 11.2 ppb (22.1 %), −1.7 ppb (−0.3 %), and 3.5 ppb (7.8 %), respectively, which meet the tropospheric systematic bias requirements defined by the science teams for the TROPOMI and CrIS sensors. The primary drivers of systematic bias were determined to be solar zenith angle, surface albedo, and cloud fraction. Random errors, representative of uncertainty in the retrievals and quantified by root mean squared errors (RMSEs), were large for all three retrievals, with UV-only, IR-only, and UV + IR wavelength retrievals having RMSEs throughout the troposphere of 17.4 ppb (19.8 % of mean tropospheric column values), 10.5 ppb (12.6 % of mean tropospheric column values), and 14.0 ppb (14.6 % of mean tropospheric column values), respectively. TOPAS UV-only profiles did not meet the uncertainty requirements defined for TROPOMI for the troposphere; however, CrIS IR-only retrievals did meet the uncertainty requirements defined by this mission. The larger random errors reflect the challenge of retrieving daily O3 profiles due to the limited sensitivity and vertical resolution of these retrievals in the troposphere. Tropospheric systematic biases and random error were lower in IR-only and combined UV + IR retrievals compared to UV-only products due to the increased sensitivity in the troposphere allowing the retrievals to deviate further from the a priori profiles. Observations from TOLNet demonstrated that the performance of the three satellite products varied by season and altitude in the troposphere. TOLNet was shown to result in similar validation statistics compared to ozonesonde data, which are a commonly used satellite evaluation data source, demonstrating that TOLNet is a sufficient source of satellite O3 profile validation data in the troposphere, which is critical as this data source is the primary product identified for the tropospheric O3 validation of the recently launched Tropospheric Emissions: Monitoring of Pollution (TEMPO) mission.</p

    Impact of Space Weather on Climate and Habitability of Terrestrial Type Exoplanets

    Get PDF
    The current progress in the detection of terrestrial type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favorable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of astrospheric, atmospheric and surface environments of exoplanets in habitable zones around G-K-M dwarfs including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles, and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favorable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro) physical, chemical, and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the habitable zone to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.Comment: 206 pages, 24 figures, 1 table; Review paper. International Journal of Astrobiology (2019

    Validation of the TOLNet lidars: the Southern California Ozone Observation Project (SCOOP)

    Get PDF
    The North America-based Tropospheric Ozone Lidar Network (TOLNet) was recently established to provide high spatiotemporal vertical profiles of ozone, to better understand physical processes driving tropospheric ozone variability and to validate the tropospheric ozone measurements of upcoming spaceborne missions such as Tropospheric Emissions: Monitoring Pollution (TEMPO). The network currently comprises six tropospheric ozone lidars, four of which are mobile instruments deploying to the field a few times per year, based on campaign and science needs. In August 2016, all four mobile TOLNet lidars were brought to the fixed TOLNet site of JPL Table Mountain Facility for the 1-week-long Southern California Ozone Observation Project (SCOOP). This intercomparison campaign, which included 400&thinsp;h of lidar measurements and 18 ozonesonde launches, allowed for the unprecedented simultaneous validation of five of the six TOLNet lidars. For measurements between 3 and 10&thinsp;km&thinsp;a.s.l., a mean difference of 0.7&thinsp;ppbv (1.7&thinsp;%), with a root-mean-square deviation of 1.6&thinsp;ppbv or 2.4&thinsp;%, was found between the lidars and ozonesondes, which is well within the combined uncertainties of the two measurement techniques. The few minor differences identified were typically associated with the known limitations of the lidars at the profile altitude extremes (i.e., first 1&thinsp;km above ground and at the instruments' highest retrievable altitude). As part of a large homogenization and quality control effort within the network, many aspects of the TOLNet in-house data processing algorithms were also standardized and validated. This thorough validation of both the measurements and retrievals builds confidence as to the high quality and reliability of the TOLNet ozone lidar profiles for many years to come, making TOLNet a valuable ground-based reference network for tropospheric ozone profiling.</p
    • …
    corecore