345 research outputs found

    Elastic-Plastic Fracture Mechanics Analysis of Critical Flaw Size in ARES I-X Flange-to-Skin Welds

    Get PDF
    NASA's Ares 1 Upper Stage Simulator (USS) is being fabricated from welded A516 steel. In order to insure the structural integrity of these welds it is of interest to calculate the critical initial flaw size (CIFS) to establish rational inspection requirements. The CIFS is in turn dependent on the critical final flaw size (CFS), as well as fatigue flaw growth resulting from transportation, handling and service-induced loading. These calculations were made using linear elastic fracture mechanics (LEFM), which are thought to be conservative because they are based on a lower bound, so called elastic, fracture toughness determined from tests that displayed significant plasticity. Nevertheless, there was still concern that the yield magnitude stresses generated in the flange-to-skin weld by the combination of axial stresses due to axial forces, fit-up stresses, and weld residual stresses, could give rise to significant flaw-tip plasticity, which might render the LEFM results to be non-conservative. The objective of the present study was to employ Elastic Plastic Fracture Mechanics (EPFM) to determine CFS values, and then compare these values to CFS values evaluated using LEFM. CFS values were calculated for twelve cases involving surface and embedded flaws, EPFM analyses with and without plastic shakedown of the stresses, LEFM analyses, and various welding residual stress distributions. For the cases examined, the computed CFS values based on elastic analyses were the smallest in all instances where the failures were predicted to be controlled by the fracture toughness. However, in certain cases, the CFS values predicted by the elastic-plastic analyses were smaller than those predicted by the elastic analyses; in these cases the failure criteria were determined by a breakdown in stress intensity factor validity limits for deep flaws (a greater than 0.90t), rather than by the fracture toughness. Plastic relaxation of stresses accompanying shakedown always increases the calculated CFS values compared to the CFS values determined without shakedown. Thus, it is conservative to ignore shakedown effects

    A Comparison of Single-Cycle Versus Multiple-Cycle Proof Testing Strategies

    Get PDF
    Single-cycle and multiple-cycle proof testing (SCPT and MCPT) strategies for reusable aerospace propulsion system components are critically evaluated and compared from a rigorous elastic-plastic fracture mechanics perspective. Earlier MCPT studies are briefly reviewed. New J-integral estimation methods for semi-elliptical surface cracks and cracks at notches are derived and validated. Engineering methods are developed to characterize crack growth rates during elastic-plastic fatigue crack growth (FCG) and the tear-fatigue interaction near instability. Surface crack growth experiments are conducted with Inconel 718 to characterize tearing resistance, FCG under small-scale yielding and elastic-plastic conditions, and crack growth during simulated MCPT. Fractography and acoustic emission studies provide additional insight. The relative merits of SCPT and MCPT are directly compared using a probabilistic analysis linked with an elastic-plastic crack growth computer code. The conditional probability of failure in service is computed for a population of components that have survived a previous proof test, based on an assumed distribution of initial crack depths. Parameter studies investigate the influence of proof factor, tearing resistance, crack shape, initial crack depth distribution, and notches on the MCPT vs. SCPT comparison. The parameter studies provide a rational basis to formulate conclusions about the relative advantages and disadvantages of SCPT and MCPT. Practical engineering guidelines are proposed to help select the optimum proof test protocol in a given application

    CP Violation

    Get PDF
    Three possibilities for the origin of CP violation are discussed: (1) the Standard Model in which all CP violation is due to one parameter in the CKM matrix, (2) the superweak model in which all CP violation is due to new physics and (3) the Standard Model plus new physics. A major goal of B physics is to distinguish these possibilities. CP violation implies time reversal violation (TRV) but direct evidence for TRV is difficult to obtain.Comment: 13 pages, to be published in Lecture Notes of TASI-2000, edited by Jonathan L. Rosner, World Scientific, 200

    A Comparison of Single-Cycle Versus Multiple-Cycle Proof Testing Strategies

    Get PDF
    Single-cycle and multiple-cycle proof testing (SCPT and MCPT) strategies for reusable aerospace propulsion system components are critically evaluated and compared from a rigorous elastic-plastic fracture mechanics perspective. Earlier MCPT studies are briefly reviewed. New J-integral estimation methods for semi-elliptical surface cracks and cracks at notches are derived and validated. Engineering methods are developed to characterize crack growth rates during elastic-plastic fatigue crack growth (FCG) and the tear-fatigue interaction near instability. Surface crack growth experiments are conducted with Inconel 718 to characterize tearing resistance, FCG under small-scale yielding and elastic-plastic conditions, and crack growth during simulated MCPT. Fractography and acoustic emission studies provide additional insight. The relative merits of SCPT and MCPT are directly compared using a probabilistic analysis linked with an elastic-plastic crack growth computer code. The conditional probability of failure in service is computed for a population of components that have survived a previous proof test, based on an assumed distribution of initial crack depths. Parameter studies investigate the influence of proof factor, tearing resistance, crack shape, initial crack depth distribution, and notches on the MCPT vs. SCPT comparison. The parameter studies provide a rational basis to formulate conclusions about the relative advantages and disadvantages of SCPT and MCPT. Practical engineering guidelines are proposed to help select the optimum proof test protocol in a given application

    Significant issues in proof testing: A critical appraisal

    Get PDF
    Issues which impact on the interpretation and quantification of proof test benefits are reviewed. The importance of each issue in contributing to the extra quality assurance conferred by proof testing components is discussed, particularly with respect to the application of advanced fracture mechanics concepts to enhance the flaw screening capability of a proof test analysis. Items covered include the role in proof testing of elastic-plastic fracture mechanics, ductile instability analysis, deterministic versus probabilistic analysis, single versus multiple cycle proof testing, and non-destructive examination (NDE). The effects of proof testing on subsequent service life are reviewed, particularly with regard to stress redistribution and changes in fracture behavior resulting from the overload. The importance of proof test conditions are also addressed, covering aspects related to test temperature, simulation of service environments, test media and the application of real-time NDE. The role of each issue in a proof test methodology is assessed with respect to its ability to: promote proof test practice to a state-of-the-art; aid optimization of proof test design; and increase awareness and understanding of outstanding issues

    A Comparison of Single-Cycle Versus Multiple-Cycle Proof Testing Strategies

    Get PDF
    Single-cycle and multiple-cycle proof testing (SCPT and MCPT) strategies for reusable aerospace propulsion system components are critically evaluated and compared from a rigorous elastic-plastic fracture mechanics perspective. Earlier MCPT studies are briefly reviewed. New J-integral estimation methods for semielliptical surface cracks and cracks at notches are derived and validated. Engineering methods are developed to characterize crack growth rates during elastic-plastic fatigue crack growth (FCG) and the tear-fatigue interaction near instability. Surface crack growth experiments are conducted with Inconel 718 to characterize tearing resistance, FCG under small-scale yielding and elastic-plastic conditions, and crack growth during simulated MCPT. Fractography and acoustic emission studies provide additional insight. The relative merits of SCPT and MCPT are directly compared using a probabilistic analysis linked with an elastic-plastic crack growth computer code. The conditional probability of failure in service is computed for a population of components that have survived a previous proof test, based on an assumed distribution of initial crack depths. Parameter studies investigate the influence of proof factor, tearing resistance, crack shape, initial crack depth distribution, and notches on the MCPT versus SCPT comparison. The parameter studies provide a rational basis to formulate conclusions about the relative advantages and disadvantages of SCPT and MCPT. Practical engineering guidelines are proposed to help select the optimum proof test protocol in a given application

    Guidelines for Proof Test Analysis

    Get PDF
    These guidelines integrate state-of-the-art elastic-plastic fracture mechanics (EPFM) and proof test implementation issues into a comprehensive proof test analysis procedure in the form of a road map which identifies the types of data, fracture mechanics based parameters, and calculations needed to perform flaw screening and minimum proof load analyses of fracture critical components. Worked examples are presented to illustrate the application of the road map to proof test analysis. The state-of-the art fracture technology employed in these guidelines is based on the EPFM parameter, J, and a pictorial representation of a J fracture analysis, called the failure assessment diagram (FAD) approach. The recommended fracture technology is validated using finite element J results, and laboratory and hardware fracture test results on the nickel-based superalloy Inconel 718, the aluminum alloy 2024-T3511, and ferritic pressure vessel steels. In all cases the laboratory specimens and hardware failed by ductile mechanisms. Advanced proof test analyses involving probability analysis and multiple-cycle proof testing (MCPT) are addressed. Finally, recommendations are provided on how to account for the effects of the proof test overload on subsequent service fatigue and fracture behaviors

    NASA Contractor Report: Guidelines for Proof Test Analysis

    Get PDF
    These Guidelines integrate state-of-the-art Elastic-Plastic Fracture Mechanics (EPFM) and proof test implementation issues into a comprehensive proof test analysis procedure in the form of a Road Map which identifies the types of data, fracture mechanics based parameters, and calculations needed to perform flaw screening and minimum proof load analyses of fracture critical components. Worked examples are presented to illustrate the application of the Road Map to proof test analysis. The state-of-the-art fracture technology employed in these Guidelines is based on the EPFM parameter, J, and a pictorial representation of a J fracture analysis, called the Failure Assessment Diagram (FAD) approach. The recommended fracture technology is validated using finite element J results, and laboratory and hardware fracture test results on the nickel-based superalloy IN-718, the aluminum alloy 2024-T351 1, and ferritic pressure vessel steels. In all cases the laboratory specimens and hardware failed by ductile mechanisms. Advanced proof test analyses involving probability analysis and Multiple Cycle Proof Testing (MCPT) are addressed. Finally, recommendations are provided on to how to account for the effects of the proof test overload on subsequent service fatigue and fracture behaviors

    Is Entrepreneurial Success Predictable? An Ex-Ante Analysis of the Character-Based Approach

    Get PDF
    This paper empirically analyzes whether the character-based approach, which focuses on the personality structure and the human capital of business founders, allows prediction of entrepreneurial success. A unique data set is used consisting of 414 persons whose personal characteristics were analyzed by different methods, namely an one-day assessment center (AC) and a standardized questionnaire, before they launched their business. Results are partly unexpected and weaker than previous ex-post findings: first, we found correlations between the AC data and the questionnaire in one subgroup only. Second, the predictive power of the AC data is slightly better than that of the questionnaire, but lower than expected in theory. Interestingly, for those subgroups where the AC data have low predictive power, the questionnaire does better. Third, when success is measured in terms of employees hired, the character-based approach is a poor predictor. Copyright 2008 The Authors.

    Outdoor learning spaces: the case of forest school

    Get PDF
    © 2017 The Author. Area published by John Wiley & Sons Ltd on behalf of Royal Geographical Society (with the Institute of British Geographers). This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.This paper contributes to the growing body of research concerning use of outdoor spaces by educators, and the increased use of informal and outdoor learning spaces when teaching primary school children. The research takes the example of forest school, a form of regular and repeated outdoor learning increasingly common in primary schools. This research focuses on how the learning space at forest school shapes the experience of children and forest school leaders as they engage in learning outside the classroom. The learning space is considered as a physical space, and also in a more metaphorical way as a space where different behaviours are permitted, and a space set apart from the national curriculum. Through semi-structured interviews with members of the community of practice of forest school leaders, the paper seeks to determine the significance of being outdoors on the forest school experience. How does this learning space differ from the classroom environment? What aspects of the forest school learning space support pupils’ experiences? How does the outdoor learning space affect teaching, and the dynamics of learning while at forest school? The research shows that the outdoor space provides new opportunities for children and teachers to interact and learn, and revealed how forest school leaders and children co-create a learning environment in which the boundaries between classroom and outdoor learning, teacher and pupil, are renegotiated to stimulate teaching and learning. Forest school practitioners see forest school as a separate learning space that is removed from the physical constraints of the classroom and pedagogical constraints of the national curriculum to provide a more flexible and responsive learning environment.Peer reviewe
    • …
    corecore