18,229 research outputs found

    Constraints on the formation mechanism of the planetary mass companion of 2MASS 1207334-393254

    Get PDF
    In this paper we discuss the nature and the possible formation scenarios of the companion of the brown dwarf 2MASS 1207334-393254. We initially discuss the basic physical properties of this object and conclude that, although from its absolute mass (5MJup5M_{\rm Jup}), it is a planetary object, in terms of its mass ratio qq and of its separation aa with respect to the primary brown dwarf, it is consistent with the statistical properties of binaries with higher primary mass. We then explore the possible formation mechanism for this object. We show that the standard planet formation mechanism of core accretion is far too slow to form this object within 10 Myr, the observed age of the system. On the other hand, the alternative mechanism of gravitational instability (proposed both in the context of planet and of binary formation) may, in principle, work and form a system with the observed properties.Comment: 5 pages, MNRAS in pres

    ARES v2 - new features and improved performance

    Full text link
    Aims: We present a new upgraded version of ARES. The new version includes a series of interesting new features such as automatic radial velocity correction, a fully automatic continuum determination, and an estimation of the errors for the equivalent widths. Methods: The automatic correction of the radial velocity is achieved with a simple cross-correlation function, and the automatic continuum determination, as well as the estimation of the errors, relies on a new approach to evaluating the spectral noise at the continuum level. Results: ARES v2 is totally compatible with its predecessor. We show that the fully automatic continuum determination is consistent with the previous methods applied for this task. It also presents a significant improvement on its performance thanks to the implementation of a parallel computation using the OpenMP library.Comment: 4 pages, 2 Figures; accepted in A&A; ARES Webpage: www.astro.up.pt/~sousasag/are

    Bosonic and fermionic Weinberg-Joos (j,0)+ (0,j) states of arbitrary spins as Lorentz-tensors or tensor-spinors and second order theory

    Full text link
    We propose a general method for the description of arbitrary single spin-j states transforming according to (j,0)+(0,j) carrier spaces of the Lorentz algebra in terms of Lorentz-tensors for bosons, and tensor-spinors for fermions, and by means of second order Lagrangians. The method allows to avoid the cumbersome matrix calculus and higher \partial^{2j} order wave equations inherent to the Weinberg-Joos approach. We start with reducible Lorentz-tensor (tensor-spinor) representation spaces hosting one sole (j,0)+(0,j) irreducible sector and design there a representation reduction algorithm based on one of the Casimir invariants of the Lorentz algebra. This algorithm allows us to separate neatly the pure spin-j sector of interest from the rest, while preserving the separate Lorentz- and Dirac indexes. However, the Lorentz invariants are momentum independent and do not provide wave equations. Genuine wave equations are obtained by conditioning the Lorentz-tensors under consideration to satisfy the Klein-Gordon equation. In so doing, one always ends up with wave equations and associated Lagrangians that are second order in the momenta. Specifically, a spin-3/2 particle transforming as (3/2,0)+ (0,3/2) is comfortably described by a second order Lagrangian in the basis of the totally antisymmetric Lorentz tensor-spinor of second rank, \Psi_[ \mu\nu]. Moreover, the particle is shown to propagate causally within an electromagnetic background. In our study of (3/2,0)+(0,3/2) as part of \Psi_[\mu\nu] we reproduce the electromagnetic multipole moments known from the Weinberg-Joos theory. We also find a Compton differential cross section that satisfies unitarity in forward direction. The suggested tensor calculus presents itself very computer friendly with respect to the symbolic software FeynCalc.Comment: LaTex 34 pages, 1 table, 8 figures. arXiv admin note: text overlap with arXiv:1312.581

    A hierarchical Bayesian model to infer PL(Z) relations using Gaia parallaxes

    Get PDF
    Aims. We aim at creating a Bayesian model to infer the coefficients of PL or PLZ relations that propagates uncertainties in the observables in a rigorous and well founded way. Methods. We propose a directed acyclic graph to encode the conditional probabilities of the inference model that will allow us to infer probability distributions for the PL and PL(Z) relations. We evaluate the model with several semi-synthetic data sets and apply it to a sample of 200 fundamental mode and first overtone mode RR Lyrae stars for which Gaia DR1 parallaxes and literature Ks-band mean magnitudes are available. We define and test several hyperprior probabilities to verify their adequacy and check the sensitivity of the solution with respect to the prior choice. Results. The main conclusion of this work is the absolute necessity of incorporating the existing correlations between the observed variables (periods, metallicities and parallaxes) in the form of model priors in order to avoid systematically biased results, especially in the case of non-negligible uncertainties in the parallaxes. The tests with the semi-synthetic data based on the data set used in Gaia Collaboration et al. (2017) reveal the significant impact that the existing correlations between parallax, metallicity and periods have on the inferred parameters. The relation coefficients obtained here have been superseded by those presented in Muraveva et al. (2018a), that incorporates the findings of this work and the more recent Gaia DR2 measurements.Comment: 14 pages, 12 figures. Submitted to A&
    • …
    corecore