1,904 research outputs found

    Design, development, fabrication, and delivery of three /3/ strain gage accelerometers Final report, Jun. 23, 1964 - Jun. 23, 1965

    Get PDF
    Strain gauge accelerometer based on anisotropic stress effect in P-N junctions using piezoelectric crystal

    Fuel quality/processing study. Volume 4: On site processing studies

    Get PDF
    Fuel treated at the turbine and the turbine exhaust gas processed at the turbine site are studied. Fuel treatments protect the turbine from contaminants or impurities either in the upgrading fuel as produced or picked up by the fuel during normal transportation. Exhaust gas treatments provide for the reduction of NOx and SOx to environmentally acceptable levels. The impact of fuel quality upon turbine maintenance and deterioration is considered. On site costs include not only the fuel treatment costs as such, but also incremental costs incurred by the turbine operator if a turbine fuel of low quality is not acceptably upgraded

    An Evaluation of Computational Fluid Dynamics for Spillway Modelling

    Get PDF
    Computational Fluid Dynamics (CFD) is used extensively by engineers to model and analyse complex issues related hydraulic design, planning studies for future generating stations, civil maintenance, supply efficiency, and dam safety. The integrity of computed values from CFD models is of considerable economic importance in the design, upgrading and maintenance of hydroelectric generating stations. CFD models have the ability to predict many characteristics flow over a spillway and Manitoba Hydro has had good agreement with physical model results in the past. However, date there has not been a review that brings all the available information together for a comprehensive assessment. The objective of this research is to build upon previous investigations on the use of CFD modelling, by focusing specifically on the ability to accurately model spillways using CFD. This paper discusses three-dimensional numerical modelling of several different spillway configurations using the CFD software Flow-3D and compares the predicted rating curves, pressures, and water surface elevations to corresponding physical model experimental values. The numerical model results were generally in agreement with physical model data, however, the relative differences in discharges were found to have a P/Hd dependency. The accuracy for a given model resolution and associated computational time required was also considered

    Coulomb Drag between One-Dimensional Wigner Crystal Rings

    Full text link
    We consider the Coulomb drag between two metal rings in which the long range Coulomb interaction leads to the formation of a Wigner crystal. The first ring is threaded by an Ahranov Bohm flux creating a persistent current J_0. The second ring is brought in close proximity to the second and due to the Coulomb interaction between the two rings a drag current J_D is produced in the second. We investigate this system at zero temperature for perfect rings as well as the effects of impurities. We show that the Wigner crystal state can in principle lead to a higher ratio of drag current to drive current J_D/J_0 than in weakly interacting electron systems.Comment: 12 pages, 10 figure

    Impact of strict anaerobs on the pathogenesis of lung infection in patients with Cystic Fibrosis

    Get PDF

    Variational bound on energy dissipation in turbulent shear flow

    Full text link
    We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds on the energy dissipation rate in plane Couette flow, bridging the entire range from low to asymptotically high Reynolds numbers. Our variational bound exhibits structure, namely a pronounced minimum at intermediate Reynolds numbers, and recovers the Busse bound in the asymptotic regime. The most notable feature is a bifurcation of the minimizing wavenumbers, giving rise to simple scaling of the optimized variational parameters, and of the upper bound, with the Reynolds number.Comment: 4 pages, RevTeX, 5 postscript figures are available as one .tar.gz file from [email protected]

    Variational bound on energy dissipation in plane Couette flow

    Full text link
    We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds on the energy dissipation rate in turbulent plane Couette flow. Using the compound matrix technique in order to reformulate this principle's spectral constraint, we derive a system of equations that is amenable to numerical treatment in the entire range from low to asymptotically high Reynolds numbers. Our variational bound exhibits a minimum at intermediate Reynolds numbers, and reproduces the Busse bound in the asymptotic regime. As a consequence of a bifurcation of the minimizing wavenumbers, there exist two length scales that determine the optimal upper bound: the effective width of the variational profile's boundary segments, and the extension of their flat interior part.Comment: 22 pages, RevTeX, 11 postscript figures are available as one uuencoded .tar.gz file from [email protected]

    Hammerhead, an ultrahigh resolution ePix camera for wavelength-dispersive spectrometers

    Full text link
    Wavelength-dispersive spectrometers (WDS) are often used in synchrotron and FEL applications where high energy resolution (in the order of eV) is important. Increasing WDS energy resolution requires increasing spatial resolution of the detectors in the dispersion direction. The common approaches with strip detectors or small pixel detectors are not ideal. We present a novel approach, with a sensor using rectangular pixels with a high aspect ratio (between strips and pixels, further called "strixels"), and strixel redistribution to match the square pixel arrays of typical ASICs while avoiding the considerable effort of redesigning ASICs. This results in a sensor area of 17.4 mm x 77 mm, with a fine pitch of 25 μ\mum in the horizontal direction resulting in 3072 columns and 176 rows. The sensors use ePix100 readout ASICs, leveraging their low noise (43 e−^-, or 180 eV rms). We present results obtained with a Hammerhead ePix100 camera, showing that the small pitch (25 μ\mum) in the dispersion direction maximizes performance for both high and low photon occupancies, resulting in optimal WDS energy resolution. The low noise level at high photon occupancy allows precise photon counting, while at low occupancy, both the energy and the subpixel position can be reconstructed for every photon, allowing an ultrahigh resolution (in the order of 1 μ\mum) in the dispersion direction and rejection of scattered beam and harmonics. Using strixel sensors with redistribution and flip-chip bonding to standard ePix readout ASICs results in ultrahigh position resolution (∼\sim1 μ\mum) and low noise in WDS applications, leveraging the advantages of hybrid pixel detectors (high production yield, good availability, relatively inexpensive) while minimizing development complexity through sharing the ASIC, hardware, software and DAQ development with existing versions of ePix cameras.Comment: 8 pages, 6 figure

    Accumulation of NKT cells in tissues of cystic fibrosis mice

    Get PDF
    • …
    corecore