389 research outputs found
IR Bismuth active centers in optical fibers: Combined excitation-emission spectroscopy
3D excitation-emission luminescence spectra of Bi-doped optical fibers of
various compositions were measured in a wide wavelength range 450-1700 nm. Such
luminescence spectra were obtained for Bi-doped pure silica and germania
fibers, and for Bi-doped Al- or P-codoped silica fibers (at room and liquid
nitrogen temperatures). The energy level schemes of IR bismuth active centers
in pure silica and germania core fibers were derived from spectra obtained. The
energy level schemes similarity of bismuth active centers in these two types of
fibers was revealed.Comment: 12pages, 7 figures, 5 table
Ionization-induced asymmetric self-phase modulation and universal modulational instability in gas-filled hollow-core photonic crystal fibers
We study theoretically the propagation of relatively long pulses with
ionizing intensities in a hollow-core photonic crystal fiber filled with a
Raman-inactive gas. Due to photoionization, previously unknown types of
asymmetric self-phase modulation and `universal' modulational instabilities
existing in both normal and anomalous dispersion regions appear. We also show
that it is possible to spontaneously generate a plasma-induced continuum of
blueshifting solitons, opening up new possibilities for pushing supercontinuum
generation towards shorter and shorter wavelengths.Comment: 5 pages, 4 figure
Nonlinear wavelength conversion in photonic crystal fibers with three zero dispersion points
In this theoretical study, we show that a simple endlessly single-mode
photonic crystal fiber can be designed to yield, not just two, but three
zero-dispersion wavelengths. The presence of a third dispersion zero creates a
rich phase-matching topology, enabling enhanced control over the spectral
locations of the four-wave-mixing and resonant-radiation bands emitted by
solitons and short pulses. The greatly enhanced flexibility in the positioning
of these bands has applications in wavelength conversion, supercontinuum
generation and pair-photon sources for quantum optics
Synthesis and Structure of Zinc(II) Complexes with 2,2'-Bipyridine
The structure of zinc(II) complexes with 2,2'-bipyridine obtained by a direct synthesis from multicomponent mixtures was studied by the method of X-ray structural analysis. The effects of the ligand environment on the composition of Zn|NxOy| coordination unit and on the nature of resulting polyhedra in the synthesized complex compounds were established. © 2018, Pleiades Publishing, Ltd
- …