64 research outputs found

    Refractory hypoglycaemia in a dog infected with Trypanosoma congolense

    Get PDF
    A 20 kg German shepherd dog was presented to a French veterinary teaching hospital for seizures and hyperthermia. The dog had returned 1 month previously from a six-month stay in Senegal and sub-Saharan Africa. Biochemistry and haematology showed severe hypoglycaemia (0.12 g/L), anaemia and thrombocytopenia. Despite administration of large amounts of glucose (30 mL of 30% glucose IV and 10 mL of 70% sucrose by gavage tube hourly), 26 consecutive blood glucose measurements were below 0.25 g/L (except one). Routine cytological examination of blood smears revealed numerous free extracytoplasmic protozoa consistent with Trypanosoma congolense. PCR confirmed a Trypanosoma congolense forest-type infection. Treatment consisted of six injections of pentamidine at 48-hour intervals. Trypanosomes had disappeared from the blood smears four days following the first injection. Clinical improvement was correlated with the normalization of laboratory values. The infection relapsed twice and the dog was treated again; clinical signs and parasites disappeared and the dog was considered cured; however, 6 years after this incident, serological examination by ELISA T. congolense was positive. The status of this dog (infected or non-infected) remains unclear. Hypoglycaemia was the most notable clinical feature in this case. It was spectacular in its severity and in its refractory nature; glucose administration seemed only to feed the trypanosomes, indicating that treatment of hypoglycaemia may in fact have been detrimental

    Carbon Nanotubes as Nanoelectromechanical Systems

    Full text link
    We theoretically study the interplay between electrical and mechanical properties of suspended, doubly clamped carbon nanotubes in which charging effects dominate. In this geometry, the capacitance between the nanotube and the gate(s) depends on the distance between them. This dependence modifies the usual Coulomb models and we show that it needs to be incorporated to capture the physics of the problem correctly. We find that the tube position changes in discrete steps every time an electron tunnels onto it. Edges of Coulomb diamonds acquire a (small) curvature. We also show that bistability in the tube position occurs and that tunneling of an electron onto the tube drastically modifies the quantized eigenmodes of the tube. Experimental verification of these predictions is possible in suspended tubes of sub-micron length.Comment: 8 pages, 5 eps figures included. Major changes; new material adde

    Proteomic identification of immunodiagnostic antigens for <i>Trypanosoma vivax </i>infections in cattle and generation of a proof-of-concept lateral flow test diagnostic device

    Get PDF
    Trypanosoma vivax is one of the causative agents of Animal African Trypanosomosis in cattle, which is endemic in sub-Saharan Africa and transmitted primarily by the bite of the tsetse fly vector. The parasite can also be mechanically transmitted, and this has allowed its spread to South America. Diagnostics are limited for this parasite and in farm settings diagnosis is mainly symptom-based. We set out to identify, using a proteomic approach, candidate diagnostic antigens to develop into an easy to use pen-side lateral flow test device. Two related members the invariant surface glycoprotein family, TvY486_0045500 and TvY486_0019690, were selected. Segments of these antigens, lacking N-terminal signal peptides and C-terminal transmembrane domains, were expressed in E. coli. Both were developed into ELISA tests and one of them, TvY486_0045500, was developed into a lateral flow test prototype. The tests were all evaluated blind with 113 randomised serum samples, taken from 37 calves before and after infection with T. vivax or T. congolense. The TvY486_0045500 and TvY486_0019690 ELISA tests gave identical sensitivity and specificity values for T. vivax infection of 94.5% (95% CI, 86.5% to 98.5%) and 88.0% (95% CI, 75.7% to 95.5%), respectively, and the TvY486_0045500 lateral flow test prototype a sensitivity and specificity of 92.0% (95% CI, 83.4% to 97.0%) and 89.8% (95% CI, 77.8% to 96.6%), respectively. These data suggest that recombinant TvY486_0045500 shows promise for the development of a pen-side lateral flow test for the diagnosis of T. vivax animal African trypanosomosis

    Multiple evolutionary origins of Trypanosoma evansi in Kenya

    Get PDF
    Trypanosoma evansi is the parasite causing surra, a form of trypanosomiasis in camels and other livestock, and a serious economic burden in Kenya and many other parts of the world. Trypanosoma evansi transmission can be sustained mechanically by tabanid and Stomoxys biting flies, whereas the closely related African trypanosomes T. brucei brucei and T. b. rhodesiense require cyclical development in tsetse flies (genus Glossina) for transmission. In this study, we investigated the evolutionary origins of T. evansi. We used 15 polymorphic microsatellites to quantify levels and patterns of genetic diversity among 41 T. evansi isolates and 66 isolates of T. b. brucei (n = 51) and T. b. rhodesiense (n = 15), including many from Kenya, a region where T. evansi may have evolved from T. brucei. We found that T. evansi strains belong to at least two distinct T. brucei genetic units and contain genetic diversity that is similar to that in T. brucei strains. Results indicated that the 41 T. evansi isolates originated from multiple T. brucei strains from different genetic backgrounds, implying independent origins of T. evansi from T. brucei strains. This surprising finding further suggested that the acquisition of the ability of T. evansi to be transmitted mechanically, and thus the ability to escape the obligate link with the African tsetse fly vector, has occurred repeatedly. These findings, if confirmed, have epidemiological implications, as T. brucei strains from different genetic backgrounds can become either causative agents of a dangerous, cosmopolitan livestock disease or of a lethal human disease, like for T. b. rhodesiense

    Population Genetics of Trypanosoma evansi from Camel in the Sudan

    Get PDF
    Genetic variation of microsatellite loci is a widely used method for the analysis of population genetic structure of microorganisms. We have investigated genetic variation at 15 microsatellite loci of T. evansi isolated from camels in Sudan and Kenya to evaluate the genetic information partitioned within and between individuals and between sites. We detected a strong signal of isolation by distance across the area sampled. The results also indicate that either, and as expected, T. evansi is purely clonal and structured in small units at very local scales and that there are numerous allelic dropouts in the data, or that this species often sexually recombines without the need of the “normal” definitive host, the tsetse fly or as the recurrent immigration from sexually recombined T. brucei brucei. Though the first hypothesis is the most likely, discriminating between these two incompatible hypotheses will require further studies at much localized scales

    Improvements on Restricted Insecticide Application Protocol for Control of Human and Animal African Trypanosomiasis in Eastern Uganda

    Get PDF
    African trypanosomes constrain livestock and human health in Sub-Saharan Africa, and aggravate poverty and hunger of these otherwise largely livestock-keeping communities. To solve this, there is need to develop and use effective and cheap tsetse control methods. To this end, we aimed at determining the smallest proportion of a cattle herd that needs to be sprayed on the legs, bellies and ears (RAP) for effective Human and Animal African Trypanosomiasis (HAT/AAT) control.; Cattle in 20 villages were ear-tagged and injected with two doses of diminazene diaceturate (DA) forty days apart, and randomly allocated to one of five treatment regimens namely; no treatment, 25%, 50%, 75% monthly RAP and every 3 month Albendazole drench. Cattle trypanosome re-infection rate was determined by molecular techniques. ArcMap V10.3 was used to map apparent tsetse density (FTD) from trap catches. The effect of graded RAP on incidence risk ratios and trypanosome prevalence was determined using Poisson and logistic random effect models in R and STATA V12.1 respectively. Incidence was estimated at 9.8/100 years in RAP regimens, significantly lower compared to 25.7/100 years in the non-RAP regimens (incidence rate ratio: 0.37; 95% CI: 0.22-0.65; P>0.001). Likewise, trypanosome prevalence after one year of follow up was significantly lower in RAP animals than in non-RAP animals (4% vs 15%, OR: 0.20, 95% CI: 0.08-0.44; P>0.001). Contrary to our expectation, level of protection did not increase with increasing proportion of animals treated.; Reduction in RAP coverage did not significantly affect efficacy of treatment. This is envisaged to improve RAP adaptability to low income livestock keepers but needs further evaluation in different tsetse challenge, HAT/AAT transmission rates and management systems before adopting it for routine tsetse control programs
    corecore