587 research outputs found

    Introducing the Fission-Fusion Reaction Process: Using a Laser-Accelerated Th Beam to produce Neutron-Rich Nuclei towards the N=126 Waiting Point of the r Process

    Full text link
    We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N=126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH2 layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of 232Th with solid-state density can be generated from a Th layer, placed beneath a deuterated polyethylene foil, both forming the production target. Th ions laser-accelerated to about 7 MeV/u will pass through a thin CH2 layer placed in front of a thicker second Th foil closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD2 production target will be accelerated as well to about 7 MeV/u, inducing the fission process of 232Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10^14 times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. In contrast to classical radioactive beam facilities, where intense but low-density radioactive beams are merged with stable targets, the novel fission-fusion process draws on the fusion between neutron-rich, short-lived, light fission fragments both from beam and target. The high ion beam density may lead to a strong collective modification of the stopping power in the target, leading to significant range enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), estimates promise a fusion yield of about 10^3 ions per laser pulse in the mass range of A=180-190, thus enabling to approach the r-process waiting point at N=126.Comment: 13 pages, 6 figure

    The excitation spectrum of mesoscopic proximity structures

    Full text link
    We investigate one aspect of the proximity effect, viz., the local density of states of a superconductor-normal metal sandwich. In contrast to earlier work, we allow for the presence of an arbitrary concentration of impurities in the structure. The superconductor induces a gap in the normal metal spectrum that is proportional to the inverse of the elastic mean free path l_N for rather clean systems. For a mean free path much shorter than the thickness of the normal metal, we find a gap size proportional to l_N that approaches the behavior predicted by the Usadel equation (diffusive limit). We also discuss the influence of interface and surface roughness, the consequences of a non-ideal transmittivity of the interface, and the dependence of our results on the choice of the model of impurity scattering.Comment: 7 pages, 8 figures (included), submitted to PR

    Diamagnetic response of cylindrical normal metal - superconductor proximity structures with low concentration of scattering centers

    Full text link
    We have investigated the diamagnetic response of composite NS proximity wires, consisting of a clean silver or copper coating, in good electrical contact to a superconducting niobium or tantalum core. The samples show strong induced diamagnetism in the normal layer, resulting in a nearly complete Meissner screening at low temperatures. The temperature dependence of the linear diamagnetic susceptibility data is successfully described by the quasiclassical Eilenberger theory including elastic scattering characterised by a mean free path l. Using the mean free path as the only fit parameter we found values of l in the range 0.1-1 of the normal metal layer thickness d_N, which are in rough agreement with the ones obtained from residual resistivity measurements. The fits are satisfactory over the whole temperature range between 5 mK and 7 K for values of d_N varying between 1.6 my m and 30 my m. Although a finite mean free path is necessary to correctly describe the temperature dependence of the linear response diamagnetic susceptibility, the measured breakdown fields in the nonlinear regime follow the temperature and thickness dependence given by the clean limit theory. However, there is a discrepancy in the absolute values. We argue that in order to reach quantitative agreement one needs to take into account the mean free path from the fits of the linear response. [PACS numbers: 74.50.+r, 74.80.-g]Comment: 10 pages, 9 figure

    Surface Enhanced Second Harmonic Generation from Macrocycle, Catenane, and Rotaxane Thin Films: Experiments and Theory

    Get PDF
    Surface enhanced second harmonic generation (SE SHG) experiments on molecular structures, macrocycles, catenanes, and rotaxanes, deposited as monolayers and multilayers by vacuum sublimation on silver, are reported. The measurements show that the molecules form ordered thin films, where the highest degree of order is observed in the case of macrocycle monolayers and the lowest in the case of rotaxane multilayers. The second harmonic generation activity is interpreted in terms of electric field induced second harmonic (EFISH) generation where the electric field is created by the substrate silver atoms. The measured second order nonlinear optical susceptibility for a rotaxane thin film is compared with that obtained by considering only EFISH contribution to SHG intensity. The electric field on the surface of a silver layer is calculated by using the Delphi4 program for structures obtained with TINKER molecular mechanics/dynamics simulations. An excellent agreement is observed between the calculated and the measured SHG susceptibilities.

    Proton acceleration by irradiation of isolated spheres with an intense laser pulse

    Get PDF
    We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2-3 x 10(20) W cm(-2). With a laser focal spot size of 10 mu m full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 mu m. Maximum proton energies of similar to 25 MeV are achieved for targets matching the focal spot size of 10 mu m in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused by Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. They make use of well-defined targets and point out pathways for future applications and experiments.DFG via the Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) Transregio SFB TR18NNSA DE-NA0002008Super-MUC pr48meIvo CermakCGC Instruments in design and realization of the Paul trap systemIMPRS-APSLMUexcellent Junior Research FundDAAD|ToIFEEuropean Union's Horizon research and innovation programme 633053Physic

    Rough Surface Effect on Meissner Diamagnetism in Normal-layer of N-S Proximity-Contact System

    Full text link
    Rough surface effect on the Meissner diamagnetic current in the normal layer of proximity contact N-S bi-layer is investigated in the clean limit. The diamagnetic current and the screening length are calculated by use of quasi-classical Green's function. We show that the surface roughness has a sizable effect, even when a normal layer width is large compared with the coherence length ξ=vF/πTc\xi =v_{\rm F}/\pi T_{\rm c}. The effect is as large as that of the impurity scattering and also as that of the finite reflection at the N-S interface.Comment: 12 pages, 3 figures. To be published in J. Phys. Soc. Jpn. Vol.71-

    Conductance of Distorted Carbon Nanotubes

    Full text link
    We have calculated the effects of structural distortions of armchair carbon nanotubes on their electrical transport properties. We found that the bending of the nanotubes decreases their transmission function in certain energy ranges and leads to an increased electrical resistance. Electronic structure calculations show that these energy ranges contain localized states with significant σ\sigma-π\pi hybridization resulting from the increased curvature produced by bending. Our calculations of the contact resistance show that the large contact resistances observed for SWNTs are likely due to the weak coupling of the NT to the metal in side bonded NT-metal configurations.Comment: 5 pages RevTeX including 4 figures, submitted to PR

    Performance of ab initio and density functional methods for conformational equilibria of CnH2n+2 alkane isomers (n=2-8)

    Full text link
    Conformational energies of n-butane, n-pentane, and n-hexane have been calculated at the CCSD(T) level and at or near the basis set limit. Post-CCSD(T) contribution were considered and found to be unimportant. The data thus obtained were used to assess the performance of a variety of density functional methods. Double-hybrid functionals like B2GP-PLYP and B2K-PLYP, especially with a small Grimme-type empirical dispersion correction, are capable of rendering conformational energies of CCSD(T) quality. These were then used as a `secondary standard' for a larger sample of alkanes, including isopentane and the branched hexanes as well as key isomers of heptane and octane. Popular DFT functionals like B3LYP, B3PW91, BLYP, PBE, and PBE0 tend to overestimate conformer energies without dispersion correction, while the M06 family severely underestimates GG interaction energies. Grimme-type dispersion corrections for these overcorrect and lead to qualitatively wrong conformer orderings. All of these functionals also exhibit deficiencies in the conformer geometries, particularly the backbone torsion angles. The PW6B95 and, to a lesser extent, BMK functionals are relatively free of these deficiencies. Performance of these methods is further investigated to derive conformer ensemble corrections to the enthalpy function, H298H0H_{298}-H_0, and the Gibbs energy function, gef(T)[G(T)H0]/T{\rm gef}(T)\equiv - [G(T)-H_0]/T, of these alkanes. While H298H0H_{298}-H_0 is only moderately sensitive to the level of theory, gef(T){\rm gef}(T) exhibits more pronounced sensitivity. Once again, double hybrids acquit themselves very well.Comment: J. Phys. Chem. A, revised [Walter Thiel festschrift

    Classical, non-linear, internal dynamics of large, isolated, vibrationally excited molecules

    Full text link
    This work reports numerical experiments intended to clarify the internal equilibration process in large molecules, following vibrational excitation. A model of amorphous and oxygenated hydrocarbon macromolecule (about 500 atoms)--simulating interstellar dust-- is built up by means of a chemical simulation code. Its structure is optimized, and its normal modes determined. About 4.5 eV of potential energy is then deposited locally by perturbing one of the C-H peripheral bonds, thus simulating the capture of a free H atom by a dangling C bond. The ensuing relaxation of the system is followed for up to 300 ps, using a molecular mechanics code. When steady state is reached, spectra and time correlation functions of kinetic energy and bond length fluctuations indicate that most normal modes have been activated, but the motion remains quasi-periodic or regular. By contrast, when the molecule is violently excited or embedded in a thermal bath (modelled by Langevin dynamics), the same markers clearly depict chaotic motions. Thus it appears that even such a large system of oscillators is unable to provide the equivalent of a thermal bath to any one of these, unless there are strong resonances between some of them. In general, therefore, an energy of a few eV's deposited in an isolated molecule will not be immediately thermalized. This conclusion is of consequence for the interpretation of astronomical UIB spectra. Key Words:IS dust--UIBs--Excitation, relaxation processes.Comment: 19 pages, 9 figures, J. of Phys. B 2002, vol 35(17
    corecore