357 research outputs found
Diversity and bioactivity of actinomycetes from Signy Island terrestrial soils, maritime Antarctic
The Antarctic represents a largely untapped source for isolation of new microorganisms with potential to produce bioactive natural products. Actinomycetes are of special interest among such microorganisms as they are known to produce a large number of natural products, many of which have clinical, pharmaceutical or agricultural applications. We isolated, characterized and classified actinomycetes from soil samples collected from different locations on Signy Island, South Orkney Islands, in the maritime Antarctic. A total of 95 putative actinomycete strains were isolated from eight soil samples using eight types of selective isolation media. The strains were dereplicated into 16 groups based on morphology and Amplified Ribosomal DNA Restriction Analysis (ARDRA) patterns. Analysis of 16S rRNA gene sequences of representatives from each group showed that streptomycetes were the dominant actinomycetes isolated from these soils; however, there were also several strains belonging to diverse and rare genera in the class Actinobacteria, including Demetria, Glaciibacter, Kocuria, Marmoricola, Nakamurella and Tsukamurella. In addition, screening for antibacterial activity and non-ribosomal peptide synthetase genes showed that many of the actinomycete strains have the potential to produce antibacterial compounds
11 beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle
OBJECTIVE: Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity. \ud
RESEARCH DESIGN AND METHODS: Rodent and human cell cultures, whole-tissue explants, and animal models were used to determine the impact of glucocorticoids and selective 11beta-HSD1 inhibition upon insulin signaling and action. \ud
RESULTS: Dexamethasone decreased insulin-stimulated glucose uptake, decreased IRS1 mRNA and protein expression, and increased inactivating pSer insulin receptor substrate (IRS)-1. 11beta-HSD1 activity and expression were observed in human and rodent myotubes and muscle explants. Activity was predominantly oxo-reductase, generating active glucocorticoid. A1 (selective 11beta-HSD1 inhibitor) abolished enzyme activity and blocked the increase in pSer IRS1 and reduction in total IRS1 protein after treatment with 11DHC but not corticosterone. In C57Bl6/J mice, the selective 11beta-HSD1 inhibitor, A2, decreased fasting blood glucose levels and improved insulin sensitivity. In KK mice treated with A2, skeletal muscle pSer IRS1 decreased and pThr Akt/PKB increased. In addition, A2 decreased both lipogenic and lipolytic gene expression.\ud
CONCLUSIONS: Prereceptor facilitation of glucocorticoid action via 11beta-HSD1 increases pSer IRS1 and may be crucial in mediating insulin resistance in skeletal muscle. Selective 11beta-HSD1 inhibition decreases pSer IRS1, increases pThr Akt/PKB, and decreases lipogenic and lipolytic gene expression that may represent an important mechanism underpinning their insulin-sensitizing action
11 beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle
OBJECTIVE: Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity. \ud
RESEARCH DESIGN AND METHODS: Rodent and human cell cultures, whole-tissue explants, and animal models were used to determine the impact of glucocorticoids and selective 11beta-HSD1 inhibition upon insulin signaling and action. \ud
RESULTS: Dexamethasone decreased insulin-stimulated glucose uptake, decreased IRS1 mRNA and protein expression, and increased inactivating pSer insulin receptor substrate (IRS)-1. 11beta-HSD1 activity and expression were observed in human and rodent myotubes and muscle explants. Activity was predominantly oxo-reductase, generating active glucocorticoid. A1 (selective 11beta-HSD1 inhibitor) abolished enzyme activity and blocked the increase in pSer IRS1 and reduction in total IRS1 protein after treatment with 11DHC but not corticosterone. In C57Bl6/J mice, the selective 11beta-HSD1 inhibitor, A2, decreased fasting blood glucose levels and improved insulin sensitivity. In KK mice treated with A2, skeletal muscle pSer IRS1 decreased and pThr Akt/PKB increased. In addition, A2 decreased both lipogenic and lipolytic gene expression.\ud
CONCLUSIONS: Prereceptor facilitation of glucocorticoid action via 11beta-HSD1 increases pSer IRS1 and may be crucial in mediating insulin resistance in skeletal muscle. Selective 11beta-HSD1 inhibition decreases pSer IRS1, increases pThr Akt/PKB, and decreases lipogenic and lipolytic gene expression that may represent an important mechanism underpinning their insulin-sensitizing action
Collective T- and P- Odd Electromagnetic Moments in Nuclei with Octupole Deformations
Parity and time invariance violating forces produce collective P- and T- odd
moments in nuclei with static octupole deformation. Collective Schiff moment,
electric octupole and dipole and also magnetic quadrupole appear due to the
mixing of rotational levels of opposite parity and can exceed single-particle
moments by more than a factor of 100. This enhancement is due to two factors,
the collective nature of the intrinsic moments and the small energy separation
between members of parity doublets. The above moments induce T- and P- odd
effects in atoms and molecules. Experiments with such systems may improve
substantially the limits on time reversal violation.Comment: 9 pages, Revte
Slogging and Stumbling Toward Social Justice in a Private Elementary School: The Complicated Case of St. Malachy
This case study examines St. Malachy, an urban Catholic elementary school primarily serving children traditionally marginalized by race, class, linguistic heritage, and disability. As a private school, St. Malachy serves the public good by recruiting and retaining such traditionally marginalized students. As empirical studies involving Catholic schools frequently juxtapose them with public schools, the author presents this examination from a different tack. Neither vilifying nor glorifying Catholic schooling, this study critically examines the pursuit of social justice in this school context. Data gathered through a 1-year study show that formal and informal leaders in St. Malachy adapted their governance, aggressively sought community resources, and focused their professional development to build the capacity to serve their increasingly pluralistic student population. The analysis confirms the deepening realization that striving toward social justice is a messy, contradictory, and complicated pursuit, and that schools in both public and private sectors are allies in this pursuit
Cross-Disciplinarity in the Advance of Antarctic Ecosystem Research
The biodiversity, ecosystem services and climate variability of the Antarctic continent, and the Southern Ocean are major components of the whole Earth system. Antarctic ecosystems are driven more strongly by the physical environment than many other marine and terrestrial ecosystems. As a consequence, to understand ecological functioning, cross-disciplinary studies are especially important in Antarctic research. The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaption of the Scientific Committee on Antarctic Research, which focused on challenges in identifying and applying cross-disciplinary approaches in the Antarctic. Novel ideas, and first steps in their implementation, were clustered into eight themes, ranging from scale problems, risk maps, organism and ecosystem responses to multiple environmental changes, to evolutionary processes. Scaling models and data across different spatial and temporal scales were identified as an overarching challenge. Approaches to bridge gaps in the research programmes included multi-disciplinary monitoring, linking biomolecular findings and simulated physical environments, as well as integrative ecological modelling. New strategies in academic education are proposed. The results of advanced cross-disciplinary approaches can contribute significantly to our knowledge of ecosystem functioning, the consequences of climate change, and to global assessments that ultimately benefit humankind
The changing form of Antarctic biodiversity
Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change nonetheless pose challenges to the current and future understanding of Antarctic biodiversity. Life in the Antarctic and the Southern Ocean is surprisingly rich, and as much at risk from environmental change as it is elsewher
Modelling snow algal habitat suitability and ecology under extreme weather events on the Antarctic Peninsula
Snow algae form extensive blooms within Antarctica’s coastal snowpacks and are a crucial contributor to its scarce terrestrial ecosystems. There is limited knowledge about the factors that contribute to snow algal bloom occurrence, distribution, ecological niche thresholds, or the prevalence of suitable conditions for bloom formation. To address these knowledge gaps and gain a clearer understanding of the current and potential future distribution of blooms, a habitat suitability model, using a Bayesian additive regression tree approach, was established. The model incorporated remotely sensed observations of blooms, physical environmental predictor variables, and snow melt modelling based on different climate scenarios. This was used to describe the ecological niche of snow algae and predict its occurrence at a landscape scale across the Antarctic Peninsula. The findings revealed that most habitable snow was predicted north of latitude 66° S, with patch density, area, and habitable elevation decreasing poleward. Factors that strongly influenced bloom presence were days of snow melt and aspect, with blooms of red-colored algae being associated with longer seasons and north-facing slopes. The model outputs also suggested heterogeneous preferences for environmental conditions amongst red and green snow algae blooms, suggesting a diversity of ecological niches for bloom-forming algae. Long-term climate-change impacts were difficult to discern as extreme summer temperatures and melt during the timeframe of this study in 2021 exceeded the projected 2100 temperatures for parts of the Antarctic Peninsula. However, warmer conditions produced a greater area of potentially habitable snow at higher elevation and latitude. Conversely, small and low-lying islands were predicted to lose habitable snow under a warming scenario. Model and training imagery both indicated that algal blooms are forming on snow-covered icecaps in the South Shetland Islands, suggesting greater potential for glacier-based algal blooms in the future, should recent trends for extreme summer temperatures persist
- …
