355 research outputs found
Range Queries on Uncertain Data
Given a set of uncertain points on the real line, each represented by
its one-dimensional probability density function, we consider the problem of
building data structures on to answer range queries of the following three
types for any query interval : (1) top- query: find the point in that
lies in with the highest probability, (2) top- query: given any integer
as part of the query, return the points in that lie in
with the highest probabilities, and (3) threshold query: given any threshold
as part of the query, return all points of that lie in with
probabilities at least . We present data structures for these range
queries with linear or nearly linear space and efficient query time.Comment: 26 pages. A preliminary version of this paper appeared in ISAAC 2014.
In this full version, we also present solutions to the most general case of
the problem (i.e., the histogram bounded case), which were left as open
problems in the preliminary versio
Study of Charm Production in W Decays
The production rate of charm quark in W decays has been measured at LEP-2 energies with the ALEPH detector. The charm quarks are tagged by using an algorithm based on the kinematic properties of the jets, the number of identified leptons, the energy of fully reconstructed D mesons and on lifetime information
Virus Propagation in Multiple Profile Networks
Suppose we have a virus or one competing idea/product that propagates over a
multiple profile (e.g., social) network. Can we predict what proportion of the
network will actually get "infected" (e.g., spread the idea or buy the
competing product), when the nodes of the network appear to have different
sensitivity based on their profile? For example, if there are two profiles
and in a network and the nodes of profile
and profile are susceptible to a highly spreading
virus with probabilities and
respectively, what percentage of both profiles will actually get infected from
the virus at the end? To reverse the question, what are the necessary
conditions so that a predefined percentage of the network is infected? We
assume that nodes of different profiles can infect one another and we prove
that under realistic conditions, apart from the weak profile (great
sensitivity), the stronger profile (low sensitivity) will get infected as well.
First, we focus on cliques with the goal to provide exact theoretical results
as well as to get some intuition as to how a virus affects such a multiple
profile network. Then, we move to the theoretical analysis of arbitrary
networks. We provide bounds on certain properties of the network based on the
probabilities of infection of each node in it when it reaches the steady state.
Finally, we provide extensive experimental results that verify our theoretical
results and at the same time provide more insight on the problem
The Littlewood-Gowers problem
We show that if A is a subset of Z/pZ (p a prime) of density bounded away
from 0 and 1 then the A(Z/pZ)-norm (that is the l^1-norm of the Fourier
transform) of the characterstic function of A is bounded below by an absolute
constant times (log p)^{1/2 - \epsilon} as p tends to infinity. This improves
on the exponent 1/3 in recent work of Green and Konyagin.Comment: 31 pp. Corrected typos. Updated references
String Indexing for Patterns with Wildcards
We consider the problem of indexing a string of length to report the
occurrences of a query pattern containing characters and wildcards.
Let be the number of occurrences of in , and the size of
the alphabet. We obtain the following results.
- A linear space index with query time .
This significantly improves the previously best known linear space index by Lam
et al. [ISAAC 2007], which requires query time in the worst case.
- An index with query time using space , where is the maximum number of wildcards allowed in the pattern.
This is the first non-trivial bound with this query time.
- A time-space trade-off, generalizing the index by Cole et al. [STOC 2004].
We also show that these indexes can be generalized to allow variable length
gaps in the pattern. Our results are obtained using a novel combination of
well-known and new techniques, which could be of independent interest
Approximating the Maximum Overlap of Polygons under Translation
Let and be two simple polygons in the plane of total complexity ,
each of which can be decomposed into at most convex parts. We present an
-approximation algorithm, for finding the translation of ,
which maximizes its area of overlap with . Our algorithm runs in
time, where is a constant that depends only on and .
This suggest that for polygons that are "close" to being convex, the problem
can be solved (approximately), in near linear time
Selection from read-only memory with limited workspace
Given an unordered array of elements drawn from a totally ordered set and
an integer in the range from to , in the classic selection problem
the task is to find the -th smallest element in the array. We study the
complexity of this problem in the space-restricted random-access model: The
input array is stored on read-only memory, and the algorithm has access to a
limited amount of workspace. We prove that the linear-time prune-and-search
algorithm---presented in most textbooks on algorithms---can be modified to use
bits instead of words of extra space. Prior to our
work, the best known algorithm by Frederickson could perform the task with
bits of extra space in time. Our result separates
the space-restricted random-access model and the multi-pass streaming model,
since we can surpass the lower bound known for the latter
model. We also generalize our algorithm for the case when the size of the
workspace is bits, where . The running time
of our generalized algorithm is ,
slightly improving over the
bound of Frederickson's algorithm. To obtain the improvements mentioned above,
we developed a new data structure, called the wavelet stack, that we use for
repeated pruning. We expect the wavelet stack to be a useful tool in other
applications as well.Comment: 16 pages, 1 figure, Preliminary version appeared in COCOON-201
On the ultimate convergence rates for isotropic algorithms and the best choices among various forms of isotropy
In this paper, we show universal lower bounds for isotropic algorithms, that hold for any algorithm such that each new point is the sum of one already visited p oint plus one random isotropic direction multiplied by any step size (whenever the step size is chosen by an oracle with arbitrarily high computational power). The bound is 1 â O(1/d) for the constant in the linear convergence (i.e. the constant C such that the distance to the optimum after n steps is upp er b ounded by C n ), as already seen for some families of evolution strategies in [19, 12], in contrast with 1 â O(1) for the reverse case of a random step size and a direction chosen by an oracle with arbitrary high computational power. We then recall that isotropy does not uniquely determine the distribution of a sample on the sphere and show that the convergence rate in isotropic algorithms is improved by using stratiïŹed or antithetic isotropy instead of naive isotropy. We show at the end of the pap er that b eyond the mathematical proof, the result holds on exp eriments. We conclude that one should use antithetic-isotropy or stratiïŹed-isotropy, and never standard-isotropy
Bregman Voronoi Diagrams: Properties, Algorithms and Applications
The Voronoi diagram of a finite set of objects is a fundamental geometric
structure that subdivides the embedding space into regions, each region
consisting of the points that are closer to a given object than to the others.
We may define many variants of Voronoi diagrams depending on the class of
objects, the distance functions and the embedding space. In this paper, we
investigate a framework for defining and building Voronoi diagrams for a broad
class of distance functions called Bregman divergences. Bregman divergences
include not only the traditional (squared) Euclidean distance but also various
divergence measures based on entropic functions. Accordingly, Bregman Voronoi
diagrams allow to define information-theoretic Voronoi diagrams in statistical
parametric spaces based on the relative entropy of distributions. We define
several types of Bregman diagrams, establish correspondences between those
diagrams (using the Legendre transformation), and show how to compute them
efficiently. We also introduce extensions of these diagrams, e.g. k-order and
k-bag Bregman Voronoi diagrams, and introduce Bregman triangulations of a set
of points and their connexion with Bregman Voronoi diagrams. We show that these
triangulations capture many of the properties of the celebrated Delaunay
triangulation. Finally, we give some applications of Bregman Voronoi diagrams
which are of interest in the context of computational geometry and machine
learning.Comment: Extend the proceedings abstract of SODA 2007 (46 pages, 15 figures
- âŠ