355 research outputs found

    Range Queries on Uncertain Data

    Full text link
    Given a set PP of nn uncertain points on the real line, each represented by its one-dimensional probability density function, we consider the problem of building data structures on PP to answer range queries of the following three types for any query interval II: (1) top-11 query: find the point in PP that lies in II with the highest probability, (2) top-kk query: given any integer k≀nk\leq n as part of the query, return the kk points in PP that lie in II with the highest probabilities, and (3) threshold query: given any threshold τ\tau as part of the query, return all points of PP that lie in II with probabilities at least τ\tau. We present data structures for these range queries with linear or nearly linear space and efficient query time.Comment: 26 pages. A preliminary version of this paper appeared in ISAAC 2014. In this full version, we also present solutions to the most general case of the problem (i.e., the histogram bounded case), which were left as open problems in the preliminary versio

    Study of Charm Production in W Decays

    Get PDF
    The production rate of charm quark in W decays has been measured at LEP-2 energies with the ALEPH detector. The charm quarks are tagged by using an algorithm based on the kinematic properties of the jets, the number of identified leptons, the energy of fully reconstructed D mesons and on lifetime information

    Virus Propagation in Multiple Profile Networks

    Full text link
    Suppose we have a virus or one competing idea/product that propagates over a multiple profile (e.g., social) network. Can we predict what proportion of the network will actually get "infected" (e.g., spread the idea or buy the competing product), when the nodes of the network appear to have different sensitivity based on their profile? For example, if there are two profiles A\mathcal{A} and B\mathcal{B} in a network and the nodes of profile A\mathcal{A} and profile B\mathcal{B} are susceptible to a highly spreading virus with probabilities ÎČA\beta_{\mathcal{A}} and ÎČB\beta_{\mathcal{B}} respectively, what percentage of both profiles will actually get infected from the virus at the end? To reverse the question, what are the necessary conditions so that a predefined percentage of the network is infected? We assume that nodes of different profiles can infect one another and we prove that under realistic conditions, apart from the weak profile (great sensitivity), the stronger profile (low sensitivity) will get infected as well. First, we focus on cliques with the goal to provide exact theoretical results as well as to get some intuition as to how a virus affects such a multiple profile network. Then, we move to the theoretical analysis of arbitrary networks. We provide bounds on certain properties of the network based on the probabilities of infection of each node in it when it reaches the steady state. Finally, we provide extensive experimental results that verify our theoretical results and at the same time provide more insight on the problem

    The Littlewood-Gowers problem

    Full text link
    We show that if A is a subset of Z/pZ (p a prime) of density bounded away from 0 and 1 then the A(Z/pZ)-norm (that is the l^1-norm of the Fourier transform) of the characterstic function of A is bounded below by an absolute constant times (log p)^{1/2 - \epsilon} as p tends to infinity. This improves on the exponent 1/3 in recent work of Green and Konyagin.Comment: 31 pp. Corrected typos. Updated references

    String Indexing for Patterns with Wildcards

    Get PDF
    We consider the problem of indexing a string tt of length nn to report the occurrences of a query pattern pp containing mm characters and jj wildcards. Let occocc be the number of occurrences of pp in tt, and σ\sigma the size of the alphabet. We obtain the following results. - A linear space index with query time O(m+σjlog⁥log⁥n+occ)O(m+\sigma^j \log \log n + occ). This significantly improves the previously best known linear space index by Lam et al. [ISAAC 2007], which requires query time Θ(jn)\Theta(jn) in the worst case. - An index with query time O(m+j+occ)O(m+j+occ) using space O(σk2nlog⁥klog⁥n)O(\sigma^{k^2} n \log^k \log n), where kk is the maximum number of wildcards allowed in the pattern. This is the first non-trivial bound with this query time. - A time-space trade-off, generalizing the index by Cole et al. [STOC 2004]. We also show that these indexes can be generalized to allow variable length gaps in the pattern. Our results are obtained using a novel combination of well-known and new techniques, which could be of independent interest

    Approximating the Maximum Overlap of Polygons under Translation

    Full text link
    Let PP and QQ be two simple polygons in the plane of total complexity nn, each of which can be decomposed into at most kk convex parts. We present an (1−Δ)(1-\varepsilon)-approximation algorithm, for finding the translation of QQ, which maximizes its area of overlap with PP. Our algorithm runs in O(cn)O(c n) time, where cc is a constant that depends only on kk and Δ\varepsilon. This suggest that for polygons that are "close" to being convex, the problem can be solved (approximately), in near linear time

    Selection from read-only memory with limited workspace

    Full text link
    Given an unordered array of NN elements drawn from a totally ordered set and an integer kk in the range from 11 to NN, in the classic selection problem the task is to find the kk-th smallest element in the array. We study the complexity of this problem in the space-restricted random-access model: The input array is stored on read-only memory, and the algorithm has access to a limited amount of workspace. We prove that the linear-time prune-and-search algorithm---presented in most textbooks on algorithms---can be modified to use Θ(N)\Theta(N) bits instead of Θ(N)\Theta(N) words of extra space. Prior to our work, the best known algorithm by Frederickson could perform the task with Θ(N)\Theta(N) bits of extra space in O(Nlg⁡∗N)O(N \lg^{*} N) time. Our result separates the space-restricted random-access model and the multi-pass streaming model, since we can surpass the Ω(Nlg⁡∗N)\Omega(N \lg^{*} N) lower bound known for the latter model. We also generalize our algorithm for the case when the size of the workspace is Θ(S)\Theta(S) bits, where lg⁥3N≀S≀N\lg^3{N} \leq S \leq N. The running time of our generalized algorithm is O(Nlg⁡∗(N/S)+N(lg⁥N)/lg⁥S)O(N \lg^{*}(N/S) + N (\lg N) / \lg{} S), slightly improving over the O(Nlg⁡∗(N(lg⁥N)/S)+N(lg⁥N)/lg⁥S)O(N \lg^{*}(N (\lg N)/S) + N (\lg N) / \lg{} S) bound of Frederickson's algorithm. To obtain the improvements mentioned above, we developed a new data structure, called the wavelet stack, that we use for repeated pruning. We expect the wavelet stack to be a useful tool in other applications as well.Comment: 16 pages, 1 figure, Preliminary version appeared in COCOON-201

    On the ultimate convergence rates for isotropic algorithms and the best choices among various forms of isotropy

    Get PDF
    In this paper, we show universal lower bounds for isotropic algorithms, that hold for any algorithm such that each new point is the sum of one already visited p oint plus one random isotropic direction multiplied by any step size (whenever the step size is chosen by an oracle with arbitrarily high computational power). The bound is 1 − O(1/d) for the constant in the linear convergence (i.e. the constant C such that the distance to the optimum after n steps is upp er b ounded by C n ), as already seen for some families of evolution strategies in [19, 12], in contrast with 1 − O(1) for the reverse case of a random step size and a direction chosen by an oracle with arbitrary high computational power. We then recall that isotropy does not uniquely determine the distribution of a sample on the sphere and show that the convergence rate in isotropic algorithms is improved by using stratiïŹed or antithetic isotropy instead of naive isotropy. We show at the end of the pap er that b eyond the mathematical proof, the result holds on exp eriments. We conclude that one should use antithetic-isotropy or stratiïŹed-isotropy, and never standard-isotropy

    Bregman Voronoi Diagrams: Properties, Algorithms and Applications

    Get PDF
    The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many variants of Voronoi diagrams depending on the class of objects, the distance functions and the embedding space. In this paper, we investigate a framework for defining and building Voronoi diagrams for a broad class of distance functions called Bregman divergences. Bregman divergences include not only the traditional (squared) Euclidean distance but also various divergence measures based on entropic functions. Accordingly, Bregman Voronoi diagrams allow to define information-theoretic Voronoi diagrams in statistical parametric spaces based on the relative entropy of distributions. We define several types of Bregman diagrams, establish correspondences between those diagrams (using the Legendre transformation), and show how to compute them efficiently. We also introduce extensions of these diagrams, e.g. k-order and k-bag Bregman Voronoi diagrams, and introduce Bregman triangulations of a set of points and their connexion with Bregman Voronoi diagrams. We show that these triangulations capture many of the properties of the celebrated Delaunay triangulation. Finally, we give some applications of Bregman Voronoi diagrams which are of interest in the context of computational geometry and machine learning.Comment: Extend the proceedings abstract of SODA 2007 (46 pages, 15 figures
    • 

    corecore