123 research outputs found

    Initial Conditions in String Cosmology

    Get PDF
    We take a critical look at a recent conjecture concerning the past attractor in the pre-big-bang scenario. We argue that the Milne universe is unlikely to be a general past attractor for such models and support this with a number of examples.Comment: 10 pages standard Latex format, no figures. Submitted to Phys. Rev.

    G1 Cosmologies with Gravitational and Scalar Waves

    Full text link
    I present here a new algorithm to generate families of inhomogeneous massless scalar field cosmologies. New spacetimes, having a single isometry, are generated by breaking the homogeneity of massless scalar field G2G_2 models along one direction. As an illustration of the technique I construct cosmological models which in their late time limit represent perturbations in the form of gravitational and scalar waves propagating on a non-static inhomogeneous background. Several features of the obtained metrics are discussed, such as their early and late time limits, structure of singularities and physical interpretation.Comment: 24 pages, 2 figure

    Solution generating in scalar-tensor theories with a massless scalar field and stiff perfect fluid as a source

    Get PDF
    We present a method for generating solutions in some scalar-tensor theories with a minimally coupled massless scalar field or irrotational stiff perfect fluid as a source. The method is based on the group of symmetries of the dilaton-matter sector in the Einstein frame. In the case of Barker's theory the dilaton-matter sector possesses SU(2) group of symmetries. In the case of Brans-Dicke and the theory with "conformal coupling", the dilaton- matter sector has SL(2,R)SL(2,R) as a group of symmetries. We describe an explicit algorithm for generating exact scalar-tensor solutions from solutions of Einstein-minimally-coupled-scalar-field equations by employing the nonlinear action of the symmetry group of the dilaton-matter sector. In the general case, when the Einstein frame dilaton-matter sector may not possess nontrivial symmetries we also present a solution generating technique which allows us to construct exact scalar-tensor solutions starting with the solutions of Einstein-minimally-coupled-scalar-field equations. As an illustration of the general techniques, examples of explicit exact solutions are constructed. In particular, we construct inhomogeneous cosmological scalar-tensor solutions whose curvature invariants are everywhere regular in space-time. A generalization of the method for scalar-tensor-Maxwell gravity is outlined.Comment: 10 pages,Revtex; v2 extended version, new parts added and some parts rewritten, results presented more concisely, some simple examples of homogeneous solutions replaced with new regular inhomogeneous solutions, typos corrected, references and acknowledgements added, accepted for publication in Phys.Rev.

    Exact inhomogeneous Einstein-Maxwell-Dilaton cosmologies

    Full text link
    We present solution generating techniques which permit to construct exact inhomogeneous and anisotropic cosmological solutions to a four-dimensional low energy limit of string theory containing non-minimally interacting electromagnetic and dilaton fields. Some explicit homogeneous and inhomogeneous cosmological solutions are constructed. For example, inhomogeneous exact solutions presenting Gowdy - type EMD universe are obtained. The asymptotic behaviour of the solutions is investigated. The asymptotic form of the metric near the initial singularity has a spatially varying Kasner form. The character of the space-time singularities is discussed. The late evolution of the solutions is described by a background homogeneous and anisotropic universe filled with weakly interacting gravitational, dilatonic and electromagnetic waves.Comment: 10 pages, latex; v2: English corrected, new comments and reference added in section 1, acknowledgments added; v3: final version to be published in Phys. Rev.

    T-Duality and Penrose limits of spatially homogeneous and inhomogeneous cosmologies

    Get PDF
    Penrose limits of inhomogeneous cosmologies admitting two abelian Killing vectors and their abelian T-duals are found in general. The wave profiles of the resulting plane waves are given for particular solutions. Abelian and non-abelian T-duality are used as solution generating techniques. Furthermore, it is found that unlike in the case of abelian T-duality, non-abelian T-duality and taking the Penrose limit are not commutative procedures.Comment: 16 pages, 4 figures. Discussion on non-abelian T-duality expande

    Inhomogeneous Einstein-Rosen String Cosmology

    Get PDF
    Families of anisotropic and inhomogeneous string cosmologies containing non-trivial dilaton and axion fields are derived by applying the global symmetries of the string effective action to a generalized Einstein-Rosen metric. The models exhibit a two-dimensional group of Abelian isometries. In particular, two classes of exact solutions are found that represent inhomogeneous generalizations of the Bianchi type VI_h cosmology. The asymptotic behaviour of the solutions is investigated and further applications are briefly discussed.Comment: Minor extension of concluding section; 18 pages, to appear in Phys.Rev.

    Quantization of Midisuperspace Models

    Get PDF
    We give a comprehensive review of the quantization of midisuperspace models. Though the main focus of the paper is on quantum aspects, we also provide an introduction to several classical points related to the definition of these models. We cover some important issues, in particular, the use of the principle of symmetric criticality as a very useful tool to obtain the required Hamiltonian formulations. Two main types of reductions are discussed: those involving metrics with two Killing vector fields and spherically symmetric models. We also review the more general models obtained by coupling matter fields to these systems. Throughout the paper we give separate discussions for standard quantizations using geometrodynamical variables and those relying on loop quantum gravity inspired methods.Comment: To appear in Living Review in Relativit

    ADHD and EEG-neurofeedback: a double-blind randomized placebo-controlled feasibility study

    Get PDF
    Electroencephalography (EEG)-neurofeedback has been shown to offer therapeutic benefits to patients with attention-deficit/hyperactivity disorder (ADHD) in several, mostly uncontrolled studies. This pilot study is designed to test the feasibility and safety of using a double-blind placebo feedback-controlled design and to explore the initial efficacy of individualized EEG-neurofeedback training in children with ADHD. Fourteen children (8–15 years) with ADHD defined according to the DSM-IV-TR criteria were randomly allocated to 30 sessions of EEG-neurofeedback (n = 8) or placebo feedback (n = 6). Safety measures (adverse events and sleep problems), ADHD symptoms and global improvement were monitored. With respect to feasibility, all children completed the study and attended all study visits and training sessions. No significant adverse effects or sleep problems were reported. Regarding the expectancy, 75% of children and their parent(s) in the active neurofeedback group and 50% of children and their parent(s) in the placebo feedback group thought they received placebo feedback training. Analyses revealed significant improvements of ADHD symptoms over time, but changes were similar for both groups. This pilot study shows that it is feasible to conduct a rigorous placebo-controlled trial to investigate the efficacy of neurofeedback training in children with ADHD. However, a double-blind design may not be feasible since using automatic adjusted reward thresholds may not work as effective as manually adjusted reward thresholds. Additionally, implementation of active learning strategies may be an important factor for the efficacy of EEG-neurofeedback training. Based on the results of this pilot study, changes are made in the design of the ongoing study
    corecore