359 research outputs found

    COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses X. Modeling based on high-precision astrometry of a sample of 25 lensed quasars: consequences for ellipticity, shear, and astrometric anomalies

    Full text link
    (abridged) Gravitationally lensed quasars can be used as powerful cosmological and astrophysical probes. We can (i) infer the Hubble constant based on the time-delay technique, (ii) unveil substructures along the l.o.s. toward distant galaxies, and (iii) compare the shape and the slope of baryons and dark matter distributions in galaxies. To reach these goals, we need high-accuracy astrometry and morphology measurements of the lens. In this work, we first present new astrometry for 11 lenses with measured time delays. Using MCS deconvolution on NIC2 HST images, we reached an astrometric accuracy of about 1-2.5 mas and an accurate shape measurement of the lens galaxy. Second, we combined these measurements with those of 14 other systems to present new mass models of these lenses. This led to the following results: 1) In 4 double-image quasars, we show that the influence of the lens environment on the time delay can easily be quantified and modeled, hence putting these lenses with high priority for time-delay determination. 2) For quadruple-image quasars, the difficulty often encountered in reproducing the image positions to milli-arcsec accuracy (astrometric anomaly) is overcome by explicitly including the nearest visible galaxy in the model. However, one anomalous system (J1131-1231) does not show any luminous perturber in its vicinity, and three others (WFI2026-4536, WFI2033-4723, and B2045+265) have problematic modeling. These 4 systems are the best candidates for a pertubation by a dark matter substructure. 3) We find a significant correlation between the PA of the light and of the mass distributions in lensing galaxies. In contrast with other studies, we find that the ellipticity of the light and of the mass also correlate well, suggesting that the overall spatial distribution of matter is not very different from the baryon distribution in the inner \sim 5 kpc of lensing galaxies.Comment: Accepted for publication in Astronomy and Astrophysics abridged abstrac

    A novel co-operative mechanism linking TGFβ and Lyn kinase activation to imatinib resistance in chronic myeloid leukaemia cells

    Get PDF
    The advent of a mechanism specific inhibitor imatinib, targeting Bcr-Abl kinase, has paved the way for new treatment strategies in chronic myeloid leukaemia (CML). However, resistance to imatinib is common in patients and has recently been linked to both transforming growth factor-β (TGFβ) and elevated Lyn kinase activity, although molecular mechanisms remain largely unknown. Here, using leukaemic MYL cell lines derived from CML patients, we show that TGFβ plays a key role in imatinib-resistance via direct effects on Lyn ubiquitination and turnover that results in bursts of Lyn kinase activity, and identify c-cbl is a candidate E3 ubiquitin ligase. Furthermore, blockade of TGFβ signalling activity with the TGFβ receptor kinase inhibitor SB431542 significantly reduces Lyn turnover and activation, and subsequently enhances imatinib-mediated CML cell death in a proteasomal-dependent manner. Collectively, our data reveals novel co-operative mechanisms in CML involving TGFβ and Lyn kinase linked to proteasome function and ubiquitination, and thus supports therapeutic approaches that target TGFβ pathway activity as a strategy for overcoming imatinib-resistance in CML

    A deconvolution-based algorithm for crowded field photometry with unknown Point Spread Function

    Get PDF
    A new method is presented for determining the Point Spread Function (PSF) of images that lack bright and isolated stars. It is based on the same principles as the MCS (Magain, Courbin, Sohy, 1998) image deconvolution algorithm. It uses the information contained in all stellar images to achieve the double task of reconstructing the PSFs for single or multiple exposures of the same field and to extract the photometry of all point sources in the field of view. The use of the full information available allows to construct an accurate PSF. The possibility to simultaneously consider several exposures makes it very well suited to the measurement of the light curves of blended point sources from data that would be very difficult or even impossible to analyse with traditional PSF fitting techniques. The potential of the method for the analysis of ground-based and space-based data is tested on artificial images and illustrated by several examples, including HST/NICMOS images of a lensed quasar and VLT/ISAAC images of a faint blended Mira star in the halo of the giant elliptical galaxy NGC5128 (Cen A).Comment: Institutes: (1) Institut d'Astrophysique et de Geophysique, Universite de Liege, allee du 6 Aout 17, B-4000 Liege, Belgium; (2) Ecole Polytechnique Federale de Lausanne (EPFL), Laboratoire d'Astrophysique, Observatoire, CH-1290 Sauverny, Switzerland; (3) Observatoire de Geneve, 51 Chemin des Maillettes, CH-1290 Sauverny, Switzerland. 8 pages, 8 figures. Accepted for publication in A&

    The use of oncolytic viruses in the treatment of multiple myeloma

    Get PDF
    Multiple myeloma accounts for 1% of all new cancers worldwide. It is the second most common haematological malignancy and has a low five-year survival rate (53.2%). Myeloma remains an incurable disease and is caused by the growth of malignant plasma cells in the bone marrow. Current anti-myeloma therapies (conventional chemotherapies, immunomodulatory drugs i.e., thalidomide and its’ analogues, proteasome inhibitors, monoclonal antibodies, and radiotherapy) initially substantially debulk tumour burden, but after a period of remission ‘plateau phase’ disease invariably relapses due to tumour recrudescence from foci of minimal residual disease (MRD) and accumulating drug resistance. Therefore, there is a compelling clinical need for the development of novel treatment regimens to target MRD and effectively eliminate all remaining tumour cells. This review will discuss the potential use of oncolytic virus (OV) therapies in the treatment of myeloma. Specifically, it will focus on preclinical studies using DNA viruses (adenovirus (Ad), vaccinia virus (VV), myxoma virus (MYXV), and herpes simplex virus (HSV)), RNA viruses (reovirus (reo), coxsackie virus, measles virus (MV) and bovine viral diarrhoea virus (BVDV), and vesicular stomatitis virus (VSV)), and on four types of viruses (VV, reo, MV-NIS and VSV-IFNβ-NIS) that have been assessed clinically in a small number of myeloma patients

    COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223

    Full text link
    We present accurate time delays for the quadruply imaged quasar HE 0435-1223. The delays were measured from 575 independent photometric points obtained in the R-band between January 2004 and March 2010. With seven years of data, we clearly show that quasar image A is affected by strong microlensing variations and that the time delays are best expressed relative to quasar image B. We measured Delta_t(BC) = 7.8+/-0.8 days, Delta_t(BD) = -6.5+/-0.7 days and Delta_t_CD = -14.3+/-0.8 days. We spacially deconvolved HST NICMOS2 F160W images to derive accurate astrometry of the quasar images and to infer the light profile of the lensing galaxy. We combined these images with a stellar population fitting of a deep VLT spectrum of the lensing galaxy to estimate the baryonic fraction, fbf_b, in the Einstein radius. We measured f_b = 0.65+0.13-0.10 if the lensing galaxy has a Salpeter IMF and f_b = 0.45+0.04-0.07 if it has a Kroupa IMF. The spectrum also allowed us to estimate the velocity dispersion of the lensing galaxy, sigma_ap = 222+/-34 km/s. We used f_b and sigma_ap to constrain an analytical model of the lensing galaxy composed of an Hernquist plus generalized NFW profile. We solve the Jeans equations numerically for the model and explored the parameter space under the additional requirement that the model must predict the correct astrometry for the quasar images. Given the current error bars on f_b and sigma_ap, we did not constrain H0 yet with high accuracy, i.e., we found a broad range of models with chi^2 < 1. However, narrowing this range is possible, provided a better velocity dispersion measurement becomes available. In addition, increasing the depth of the current HST imaging data of HE 0435-1223 will allow us to combine our constraints with lens reconstruction techniques that make use of the full Einstein ring that is visible in this object.Comment: 12 pages, 10 figures, final version accepted for publication by A&

    COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses VII. Time delays and the Hubble constant from WFI J2033-4723

    Full text link
    Gravitationally lensed quasars can be used to map the mass distribution in lensing galaxies and to estimate the Hubble constant H0 by measuring the time delays between the quasar images. Here we report the measurement of two independent time delays in the quadruply imaged quasar WFI J2033-4723 (z = 1.66). Our data consist of R-band images obtained with the Swiss 1.2 m EULER telescope located at La Silla and with the 1.3 m SMARTS telescope located at Cerro Tololo. The light curves have 218 independent epochs spanning 3 full years of monitoring between March 2004 and May 2007, with a mean temporal sampling of one observation every 4th day. We measure the time delays using three different techniques, and we obtain Dt(B-A) = 35.5 +- 1.4 days (3.8%) and Dt(B-C) = 62.6 +4.1/-2.3 days (+6.5%/-3.7%), where A is a composite of the close, merging image pair. After correcting for the time delays, we find R-band flux ratios of F_A/F_B = 2.88 +- 0.04, F_A/F_C = 3.38 +- 0.06, and F_A1/F_A2 = 1.37 +- 0.05 with no evidence for microlensing variability over a time scale of three years. However, these flux ratios do not agree with those measured in the quasar emission lines, suggesting that longer term microlensing is present. Our estimate of H0 agrees with the concordance value: non-parametric modeling of the lensing galaxy predicts H0 = 67 +13/-10 km s-1 Mpc-1, while the Single Isothermal Sphere model yields H0 = 63 +7/-3 km s-1 Mpc-1 (68% confidence level). More complex lens models using a composite de Vaucouleurs plus NFW galaxy mass profile show twisting of the mass isocontours in the lensing galaxy, as do the non-parametric models. As all models also require a significant external shear, this suggests that the lens is a member of the group of galaxies seen in field of view of WFI J2033-4723.Comment: 14 pages, 12 figures, published in A&

    Modulated patterns in a reduced model of a transitional shear flow

    Get PDF
    We consider a close relative of plane Couette flow called Waleffe flow in which the fluid is confined between two free-slip walls and the flow driven by a sinusoidal force. We use a reduced model of such flows constructed elsewhere to compute stationary exact coherent structures of Waleffe flow in periodic domains with a large spanwise period. The computations reveal the emergence of stationary states exhibiting strong amplitude and wavelength modulation in the spanwise direction. These modulated states lie on branches exhibiting complex dependence on the Reynolds number but no homoclinic snaking

    Deep near-infrared imaging of the HE0450-2958 system

    Full text link
    The QSO HE0450-2958 and the companion galaxy with which it is interacting, both ultra luminous in the infrared, have been the subject of much attention in recent years, as the quasar host galaxy remained undetected. This led to various interpretations on QSO and galaxy formation and co-evolution, such as black hole ejection, jet induced star formation, dust obscured galaxy, or normal host below the detection limit. We carried out deep observations in the near-IR in order to solve the puzzle concerning the existence of any host. The object was observed with the ESO VLT and HAWK-I in the near-IR J-band for 8 hours. The images have been processed with the MCS deconvolution method (Magain, Courbin & Sohy, 1998), permitting accurate subtraction of the QSO light from the observations. The compact emission region situated close to the QSO, called the blob, which previously showed only gas emission lines in the optical spectra, is now detected in our near-IR images. Its high brightness implies that stars likely contribute to the near-IR emission. The blob might thus be interpreted as an off-centre, bright and very compact host galaxy, involved in a violent collision with its companion.Comment: 4 pages, 3 figures, accepted for publication in A&

    Near-IR observations of the HE0450-2958 system: discovery of a second AGN?

    Full text link
    The QSO HE0450-2958 was brought to the front scene by the non-detection of its host galaxy and strong upper limits on the latter's luminosity. The QSO is also a powerful infrared emitter, in gravitational interaction with a strongly distorted UltraLuminous InfraRed companion galaxy. We investigate the properties of the companion galaxy, through new near- and mid-infrared observations of the system obtained with NICMOS onboard HST, ISAAC and VISIR on the ESO VLT. The companion galaxy is found to harbour a point source revealed only in the infrared, in what appears as a hole or dark patch in the optical images. Various hypotheses on the nature of this point source are analyzed and it is found that the only plausible one is that it is a strongly reddened AGN hidden behind a thick dust cloud. The hypothesis that the QSO supermassive black hole might have been ejected from the companion galaxy in the course of a galactic collision involving 3-body black holes interaction is also reviewed, on the basis of this new insight on a definitely complex system.Comment: 8 pages, 8 figures, accepted for publication in MNRA

    The rise of fully turbulent flow

    Full text link
    Over a century of research into the origin of turbulence in wallbounded shear flows has resulted in a puzzling picture in which turbulence appears in a variety of different states competing with laminar background flow. At slightly higher speeds the situation changes distinctly and the entire flow is turbulent. Neither the origin of the different states encountered during transition, nor their front dynamics, let alone the transformation to full turbulence could be explained to date. Combining experiments, theory and computer simulations here we uncover the bifurcation scenario organising the route to fully turbulent pipe flow and explain the front dynamics of the different states encountered in the process. Key to resolving this problem is the interpretation of the flow as a bistable system with nonlinear propagation (advection) of turbulent fronts. These findings bridge the gap between our understanding of the onset of turbulence and fully turbulent flows.Comment: 31 pages, 9 figure
    corecore