1,889 research outputs found

    A Formal Sociologic Study of Free Will

    Full text link
    We make a formal sociologic study of the concept of free will. By using the language of mathematics and logic, we define what we call everlasting societies. Everlasting societies never age: persons never age, and the goods of the society are indestructible. The infinite history of an everlasting society unfolds by following deterministic and probabilistic laws that do their best to satisfy the free will of all the persons of the society. We define three possible kinds of histories for everlasting societies: primitive histories, good histories, and golden histories. In primitive histories, persons are inherently selfish, and they use their free will to obtain the personal ownerships of all the goods of the society. In good histories, persons are inherently good, and they use their free will to distribute the goods of the society. In good histories, a person is not only able to desire the personal ownership of goods, but is also able to desire that a good be owned by another person. In golden histories, free will is bound by the ethic of reciprocity, which states that "you should wish upon others as you would like others to wish upon yourself". In golden societies, the ethic of reciprocity becomes a law that partially binds free will, and that must be abided at all times. In other words, the verb "should" becomes the verb "must"

    Knizhnik-Zamolodchikov equations and the Calogero-Sutherland-Moser integrable models with exchange terms

    Get PDF
    It is shown that from some solutions of generalized Knizhnik-Zamolodchikov equations one can construct eigenfunctions of the Calogero-Sutherland-Moser Hamiltonians with exchange terms, which are characterized by any given permutational symmetry under particle exchange. This generalizes some results previously derived by Matsuo and Cherednik for the ordinary Calogero-Sutherland-Moser Hamiltonians.Comment: 13 pages, LaTeX, no figures, to be published in J. Phys.

    Multipole radiation in a collisonless gas coupled to electromagnetism or scalar gravitation

    Full text link
    We consider the relativistic Vlasov-Maxwell and Vlasov-Nordstr\"om systems which describe large particle ensembles interacting by either electromagnetic fields or a relativistic scalar gravity model. For both systems we derive a radiation formula analogous to the Einstein quadrupole formula in general relativity.Comment: 21 page

    Generalization of a result of Matsuo and Cherednik to the Calogero-Sutherland- Moser integrable models with exchange terms

    Full text link
    A few years ago, Matsuo and Cherednik proved that from some solutions of the Knizhnik-Zamolodchikov (KZ) equations, which first appeared in conformal field theory, one can obtain wave functions for the Calogero integrable system. In the present communication, it is shown that from some solutions of generalized KZ equations, one can construct wave functions, characterized by any given permutational symmetry, for some Calogero-Sutherland-Moser integrable models with exchange terms. Such models include the spin generalizations of the original Calogero and Sutherland ones, as well as that with δ\delta-function interaction.Comment: Latex, 7 pages, Communication at the 4th Colloquium "Quantum Groups and Integrable Systems", Prague (June 1995

    Lax pairs, Painlev\'e properties and exact solutions of the alogero Korteweg-de Vries equation and a new (2+1)-dimensional equation

    Full text link
    We prove the existence of a Lax pair for the Calogero Korteweg-de Vries (CKdV) equation. Moreover, we modify the T operator in the the Lax pair of the CKdV equation, in the search of a (2+1)-dimensional case and thereby propose a new equation in (2+1) dimensions. We named this the (2+1)-dimensional CKdV equation. We show that the CKdV equation as well as the (2+1)-dimensional CKdV equation are integrable in the sense that they possess the Painlev\'e property. Some exact solutions are also constructed

    Spectrum of a spin chain with inverse square exchange

    Full text link
    The spectrum of a one-dimensional chain of SU(n)SU(n) spins positioned at the static equilibrium positions of the particles in a corresponding classical Calogero system with an exchange interaction inversely proportional to the square of their distance is studied. As in the translationally invariant Haldane--Shastry model the spectrum is found to exhibit a very simple structure containing highly degenerate ``super-multiplets''. The algebra underlying this structure is identified and several sets of raising and lowering operators are given explicitely. On the basis of this algebra and numerical studies we give the complete spectrum and thermodynamics of the SU(2)SU(2) system.Comment: 9 pages, late

    Nonlinear Schroedinger Equations within the Nelson Quantization Picture

    Full text link
    We present a class of nonlinear Schroedinger equations (NLSEs) describing, in the mean field approximation, systems of interacting particles. This class of NLSEs is obtained generalizing expediently the approach proposed in Ref. [G.K. Phys. Rev. A 55, 941 (1997)], where a classical system obeying to an exclusion-inclusion principle is quantized using the Nelson stochastic quantization. The new class of NLSEs is obtained starting from the most general nonlinear classical kinetics compatible with a constant diffusion coefficient D=\hbar/2m. Finally, in the case of s-stationary states, we propose a transformation which linearizes the NLSEs here proposed.Comment: 5 pages, (RevTeX4), to appear in Rep. Math. Phys. 51 (2003

    Abelian Chern-Simons Vortices and Holomorphic Burgers' Hierarchy

    Get PDF
    The Abelian Chern-Simons Gauge Field Theory in 2+1 dimensions and its relation with holomorphic Burgers' Hierarchy is considered. It is shown that the relation between complex potential and the complex gauge field as in incompressible and irrotational hydrodynamics, has meaning of the analytic Cole-Hopf transformation, linearizing the Burgers Hierarchy in terms of the holomorphic Schr\"odinger Hierarchy. Then the motion of planar vortices in Chern-Simons theory, appearing as pole singularities of the gauge field, corresponds to motion of zeroes of the hierarchy. Using boost transformations of the complex Galilean group of the hierarchy, a rich set of exact solutions, describing integrable dynamics of planar vortices and vortex lattices in terms of the generalized Kampe de Feriet and Hermite polynomials is constructed. The results are applied to the holomorphic reduction of the Ishimori model and the corresponding hierarchy, describing dynamics of magnetic vortices and corresponding lattices in terms of complexified Calogero-Moser models. Corrections on two vortex dynamics from the Moyal space-time non-commutativity in terms of Airy functions are found.Comment: 15 pages, talk presented in Workshop `Nonlinear Physics IV: Theory and Experiment`, 22-30 June 2006, Gallipoli, Ital

    Sufficient conditions for the existence of bound states in a central potential

    Full text link
    We show how a large class of sufficient conditions for the existence of bound states, in non-positive central potentials, can be constructed. These sufficient conditions yield upper limits on the critical value, gc(ℓ)g_{\rm{c}}^{(\ell)}, of the coupling constant (strength), gg, of the potential, V(r)=−gv(r)V(r)=-g v(r), for which a first ℓ\ell-wave bound state appears. These upper limits are significantly more stringent than hitherto known results.Comment: 7 page

    Testing Hall-Post Inequalities With Exactly Solvable N-Body Problems

    Get PDF
    The Hall--Post inequalities provide lower bounds on NN-body energies in terms of N′N'-body energies with N′<NN'<N. They are rewritten and generalized to be tested with exactly-solvable models of Calogero-Sutherland type in one and higher dimensions. The bound for NN spinless fermions in one dimension is better saturated at large coupling than for noninteracting fermions in an oscillatorComment: 7 pages, Latex2e, 2 .eps figure
    • …
    corecore