100 research outputs found

    Comprehensive characterization of molecular interactions based on nanomechanics

    Get PDF
    Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (approximately 748*10(6) Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions

    Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance

    Full text link
    The alarming growth of the antibiotic-resistant superbugs methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) is driving the development of new technologies to investigate antibiotics and their modes of action. We report the label-free detection of vancomycin binding to bacterial cell wall precursor analogues (mucopeptides) on cantilever arrays, with 10 nM sensitivity and at clinically relevant concentrations in blood serum. Differential measurements quantified binding constants for vancomycin-sensitive and vancomycin-resistant mucopeptide analogues. Moreover, by systematically modifying the mucopeptide density we gain new insights into the origin of surface stress. We propose that stress is a product of a local chemical binding factor and a geometrical factor describing the mechanical connectivity of regions affected by local binding in terms of a percolation process. Our findings place BioMEMS devices in a new class of percolative systems. The percolation concept will underpin the design of devices and coatings to significantly lower the drug detection limit and may also impact on our understanding of antibiotic drug action in bacteria.Comment: Comments: This paper consists of the main article (6 pages, 5 figures) plus Supplemental Material (6 pages, 3 figures). More details are available at http://www.london-nano.co

    Absorbing customer knowledge: how customer involvement enables service design success

    Get PDF
    Customers are a knowledge resource outside of the firm that can be utilized for new service success by involving them in the design process. However, existing research on the impact of customer involvement (CI) is inconclusive. Knowledge about customers’ needs and on how best to serve these needs (articulated in the service concept) is best obtained from customers themselves. However, codesign runs the risk of losing control of the service concept. This research argues that of the processes of external knowledge, acquisition (via CI), customer knowledge assimilation, and concept transformation form a capability that enables the firm to exploit customer knowledge in the form of a successful new service. Data from a survey of 126 new service projects show that the impact of CI on new service success is fully mediated by customer knowledge assimilation (the deep understanding of customers’ latent needs) and concept transformation (the modification of the service concept due to customer insights). However, its impact is more nuanced. CI exhibits an “∩”-shaped relationship with transformation, indicating there is a limit to the beneficial effect of CI. Its relationship with assimilation is “U” shaped, suggesting a problem with cognitive inertia where initial learnings are ignored. Customer knowledge assimilation directly impacts success, while concept transformation only helps success in the presence of resource slack. An evolving new service design is only beneficial if the firm has the flexibility to adapt to change

    ‚Physisches’ und Multi-Realisierbarkeit, oder: zwei Probleme fĂŒr den Physikalismus gelöst

    No full text
    Nimtz C. ‚Physisches’ und Multi-Realisierbarkeit, oder: zwei Probleme fĂŒr den Physikalismus gelöst. In: Backmann M, Michel JG, eds. Physikalismus – Willensfreiheit – KĂŒnstliche Intelligenz. Paderborn: mentis; 2009: 23–42

    Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power

    No full text
    The dimeric enzyme triosephosphate isomerase (TIM) has a very tight and rigid dimer interface. At this interface a critical hydrogen bond is formed between the main chain oxygen atom of the catalytic residue Lys13 and the completely buried side chain of Gln65 (of the same subunit), The sequence of Leishmania mexicana TIM, closely related to Trypanosoma brucei TIM (68 % sequence identity), shows that this highly conserved glutamine has been replaced by a glutamate, Therefore, the 1.8 Angstrom crystal structure of leishmania TIM (at pH 5.9) was determined. The comparison with the structure of trypanosomal TIM shows no rearrangements in the vicinity of Glu65, suggesting that its side chain is protonated and is hydrogen bonded to the main chain oxygen of Lys13, Ionization of this glutamic acid side chain causes a pa-dependent decrease in the thermal stability of leishmania TIM. The presence of this glutamate, also in its protonated state, disrupts to some extent the conserved hydrogen bond network, as seen in all other TIMs, Restoration of the hydrogen bonding network by its mutation to glutamine in the E65Q variant of leishmania TIM results in much higher stability; for example, at pH 7, the apparent melting temperature increases by 26 degrees C (57 degrees C for leishmania TIM to 83 degrees C for the E65Q variant). This mutation does not affect the kinetic properties, showing that even point mutations can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power at the mesophilic temperature
    • 

    corecore