60 research outputs found

    An orbit simulation study of a geopotential research mission including satellite-to-satellite tracking and disturbance compensation systems

    Get PDF
    Two orbit simulations, one representing the actual Geopotential Research Mission (GRM) orbit and the other representing the orbit estimated from orbit determination techniques, are presented. A computer algorithm was created to simulate GRM's drag compensation mechanism so the fuel expenditure and proof mass trajectories relative to the spacecraft centroid could be calculated for the mission. The results of the GRM DISCOS simulation demonstrated that the spacecraft can essentially be drag-free. The results showed that the centroid of the spacecraft can be controlled so that it will not deviate more than 1.0 mm in any direction from the centroid of the proof mass

    Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination

    Get PDF
    Geodetic satellites such as GEOSAT, SPOT, ERS-1, and TOPEX/Poseidon require accurate orbital computations to support the scientific data they collect. Until recently, gravity field mismodeling was the major source of error in precise orbit definition. However, albedo and infrared re-radiation, and spacecraft thermal imbalances produce in combination no more than a 6-cm radial root-mean-square (RMS) error over a 10-day period. This requires the development of nonconservative force models that take the satellite's complex geometry, attitude, and surface properties into account. For TOPEX/Poseidon, a 'box-wing' satellite form was investigated that models the satellite as a combination of flat plates arranged in a box shape with a connected solar array. The nonconservative forces acting on each of the eight surfaces are computed independently, yielding vector accelerations which are summed to compute the total aggregate effect on the satellite center-of-mass. In order to test the validity of this concept, 'micro-models' based on finite element analysis of TOPEX/Poseidon were used to generate acceleration histories in a wide variety of orbit orientations. These profiles are then compared to the box-wing model. The results of these simulations and their implication on the ability to precisely model the TOPEX/Poseidon orbit are discussed

    Revisiting OSIRIS-REx Touch-And-Go (TAG) Performance Given the Realities of Asteroid Bennu

    Get PDF
    The Origins, Spectral Interpretation, Resource Identification, and SecurityRegolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission that launched in 2016 and rendezvoused with the near-Earth asteroid (101955) Bennu in late 2018. Upon arrival, the surface of Bennu was found to be much rockier than expected. The original Touch-and-Go (TAG) requirement for sample collection was to deliver the spacecraft to a site with a 25-meter radius; however, the largest hazard-free sites are no larger than 8 meters in radius. To accommodate the dearth of safe sample collection sites, the project reevaluated all aspects of flight system performance pertaining to TAG in order to account for the demonstrated performance of the spacecraft and navigation prediction accuracies. More-over, the project has base lined on board natural feature tracking instead of lidar for providing the on board navigation state update during the TAG sequence. This paper summarizes the improvements in error source estimation, enhancements in on board trajectory correction, and results of recent Monte Carlo simulation to en-able sample collection with the given constraints. TAG delivery and on board navigation performance are presented for the final four candidate TAG sites

    OSIRIS-REx Orbit Determination Covariance Studies at Bennu

    Get PDF
    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the small, Earth-crossing asteroid (101955) Bennu in late 2018, ultimately returning a sample of regolith to Earth. Approximately three months before the encounter with Bennu, the asteroid becomes detectable in the narrow field PolyCam imager. The spacecraft's rendezvous with Bennu begins with a series of four Asteroid Approach Maneuvers, slowing the spacecraft's speed relative to Bennu beginning two and a half months prior to closest approach, ultimately delivering the spacecraft to a point 18 km from Bennu in Nov, 2018. An extensive campaign of proximity operations activities to characterize the properties of Bennu and select a suitable sample site will follow. This paper will discuss the challenges of navigating near a small 500-m diameter asteroid. The navigation at close proximity is dependent on the accurate mathematical model or digital terrain map of the asteroid's shape. Predictions of the spacecraft state are very sensitive to spacecraft small forces, solar radiation pressure, and mis-modeling of Bennu's gravity field. Uncertainties in the physical parameters of the central body Bennu create additional challenges. The navigation errors are discussed and their impact on science planning will be presented

    Optical Navigation Simulation and Performance Analysis for Osiris-Rex Proximity Operations

    Get PDF
    The OSIRIS-REx mission timeline with OpNav milestones is presented in Figure 1. The first three proximity operations (ProxOps) mission phases focus on Navigation. During these phases, OSIRIS-REx approaches Bennu, conducts equatorial and polar flybys in Preliminary Survey, and inserts into the first mission orbit: Orbit A. During these phases, the OpNav techniques evolve from point-source to resolved-body centroiding to landmark tracking

    OSIRIS-REx Orbit Determination Performance During the Navigation Campaign

    Get PDF
    The OSIRIS-REx mission Navigation Campaign consists of three sub-phases: Approach,Preliminary Survey, and Orbital A. Approach was designed for initial characterization ofBennu while matching Bennu's heliocentric velocity. Preliminary Survey provided the firstspacecraft-based estimate of Bennu's mass. This phase consisted of five target flybys witha close approach distance of about 7 km. Orbital A was a two-month phase devoted to theNavigation Team learning the close proximity operations dynamics and environment aroundBennu and transitioning from center-finding optical navigation to landmark feature-basednavigation. This paper provides a detailed summary of the orbit determination performancethroughout the Navigation Campaign

    OSIRIS-REx Orbit Determination Covariance Studies at Bennu

    Get PDF
    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the small, Earth-crossing asteroid (101955) Bennu in late 2018, and ultimately return a sample of regolith to Earth. Approximately 3 months before the encounter with Bennu, the asteroid finally becomes detectable in the narrow field PolyCam imager. The spacecraft's rendezvous with Bennu begins with a series of four Asteroid Approach Maneuvers, which slow the spacecraft's speed relative to Bennu beginning two and a half months prior to closest approach, ultimately delivering the spacecraft to a point 18 km from Bennu on Nov 18, 2018. An extensive campaign of proximity operations activities to characterize the properties of Bennu and select a suitable sample site will follow. This paper will discuss the challenges of navigating near a small 500-m diameter asteroid. The navigation at close proximity is dependent on the accurate mathematical model or digital terrain map of the asteroids shape. Predictions of the spacecraft state are very sensitive to spacecraft small forces, solar radiation pressure, and mis-modeling of Bennu's gravity field. Uncertainties in the physical parameters of the central body Bennu create additional challenges. The navigation errors are discussed and their impact on science planning will be presented

    Early Navigation Performance of the OSIRIS-REx Approach to Bennu

    Get PDF
    The New Frontiers-class OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) mission is the first American endeavor to return a sample from an asteroid. In preparation for retrieving the sample, OSIRIS-REx is conducting a campaign of challenging proximity-operations maneuvers and scientific observations, bringing the spacecraft closer and closer to the surface of near-Earth asteroid (101955) Bennu. Ultimately, the spacecraft will enter a 900-meter-radius orbit about Bennu and conduct a series of reconnaissance flybys of candidate sample sites before being guided into contact with the surface for the Touch and Go sample collection event. Between August and December 2018, the OSIRIS-REx team acquired the first optical observations of Bennu and used them for navigation. We conducted a series of maneuvers with the main engine, Trajectory Correction Maneuver, and Attitude Control System thruster sets to slow the OSIRIS-REx approach to Bennu and achieve rendezvous on December 3, 2018. This paper describes the trajectory design, navigation conops, and key navigation results from the Approach phase of the OSIRIS-REx mission

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit
    • …
    corecore