268 research outputs found

    Resolution of Joint Molecules by RuvABC and RecG Following Cleavage of the Escherichia coli Chromosome by EcoKI

    Get PDF
    DNA double-strand breaks can be repaired by homologous recombination involving the formation and resolution of Holliday junctions. In Escherichia coli, the RuvABC resolvasome and the RecG branch-migration enzyme have been proposed to act in alternative pathways for the resolution of Holliday junctions. Here, we have studied the requirements for RuvABC and RecG in DNA double-strand break repair after cleavage of the E. coli chromosome by the EcoKI restriction enzyme. We show an asymmetry in the ability of RuvABC and RecG to deal with joint molecules in vivo. We detect linear DNA products compatible with the cleavage-ligation of Holliday junctions by the RuvABC pathway but not by the RecG pathway. Nevertheless we show that the XerCD-mediated pathway of chromosome dimer resolution is required for survival regardless of whether the RuvABC or the RecG pathway is active, suggesting that crossing-over is a common outcome irrespective of the pathway utilised. This poses a problem. How can cells resolve joint molecules, such as Holliday junctions, to generate crossover products without cleavage-ligation? We suggest that the mechanism of bacterial DNA replication provides an answer to this question and that RecG can facilitate replication through Holliday junctions

    Conservation implications of misidentification and killing of protected species

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability: All data supporting the results in this paper are available from Zenodo (digital repository).Killing protected species mistaken for morphologically similar quarry species, or species with weaker protection, can hinder their conservation. Despite policy aims to reduce threats from illegal killing, information is lacking on susceptible species, conservation impacts and the identification accuracy of hunters. We examined the ability of hunters (n = 232) in Arctic Russia to identify the endangered Northwest European Bewick's swan Cygnus columbianus bewickii using photographs. Only 14% (n = 33) identified this species correctly and distinguished it from sympatric and congeneric whooper swans C. cygnus and mute swans C. olor , with 15% of individuals admitting to accidentally hunting a Bewick's swan in the previous 3 years. We conclude that there is a risk of Bewick's swans being shot accidentally when mistaken for similar species with less legal protection. Improving hunters' skills in discerning protected from legitimate quarry species is likely to be an effective tool for conservation of morphologically similar species.Peter Smith Charitable Trust for NatureOlive Herbert Charitable Trus

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph

    Prediction of metabolic clusters in early lactation dairy cows using models based on 2 milk biomarkers

    Get PDF
    The aim of this study was to describe metabolism of early-lactation dairy cows by clustering cows based on glucose, insulin-like growth factor I (IGF-I), free fatty acid, and beta-hydroxybutyrate (BHB) using the k-means method. Predictive models for metabolic clusters were created and validated using 3 sets of milk biomarkers (milk metabolites and enzymes, glycans on the immuno-gamma globulin fraction of milk, and Fourier-transform mid-infrared spectra of milk). Metabolic clusters are used to identify dairy cows with a balanced or imbalanced metabolic profile. Around 14 and 35 d in milk, serum or plasma concentrations of BHB, free fatty acids, glucose, and IGF-I were determined. Cows with a favorable metabolic profile were grouped together in what was referred to as the "balanced" group (n = 43) and were compared with cows in what was referred to as the "other balanced" group (n = 64). Cows with an unfavorable metabolic profile were grouped in what was referred to as the "imbalanced" group (n = 19) and compared with cows in what was referred to as the "other imbalanced" group (n = 88). Glucose and IGF-I were higher in balanced compared with other balanced cows. Free fatty acids and BHB were lower in balanced compared with other balanced cows. Glucose and IGF-I were lower in imbalanced compared with other imbalanced cows. Free fatty acids arid BHB were higher in imbalanced cows. Metabolic clusters were related to production parameters. There was a trend for a higher daily increase in fat- and protein-corrected milk yield in balanced cows, whereas that of imbalanced cows was higher. Dry matter intake and the daily increase in dry matter intake were higher in balanced cows and lower in imbalanced cows. Energy balance was continuously higher in balanced cows and lower in imbalanced cows. Weekly or twice-weekly milk samples were taken and milk metabolites and enzymes (milk glucose, glucose-6-phosphate, BHB, lactate dehydrogenase, N-acetyl-beta-D-glucosaminidase, isocitrate), immunogamma globulin glycans (19 peaks), and Fourier-transform mid-infrared spectra (1,060 wavelengths reduced to 15 principal components) were determined. Milk biomarkers with or without additional cow information (days in milk, parity, milk yield featurs) were used to create predictive models for the metabolic clusters. Accuracy for prediction of balanced (80%) and imbalanced (88%) cows was highest using milk metabolites and enzymes combined with days in milk and parity. The results and models of the present study are part of the GplusE project and identify novel milk-based phenotypes that may be used as predictors for metabolic and performance traits in early-lactation dairy cows

    Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function

    Get PDF
    Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way in which sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we compute energy landscapes, which describe the accessible secondary structures for a range of sequence lengths, to analyze the transcriptional process as a given sequence elongates to full length. In line with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: low-barrier landscape with an ensemble of different conformations in equilibrium before encountering a substrate; barrier-free landscape in which a direct, dominant “downhill” pathway to the minimum free energy structure is apparent; and a barrier-dominated landscape with two isolated conformational states, each associated with a different biological function. Sharing concepts with the “new view” of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved in various riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design

    SCF Ensures Meiotic Chromosome Segregation Through a Resolution of Meiotic Recombination Intermediates

    Get PDF
    The SCF (Skp1-Cul1-F-box) complex contributes to a variety of cellular events including meiotic cell cycle control, but its function during meiosis is not understood well. Here we describe a novel function of SCF/Skp1 in meiotic recombination and subsequent chromosome segregation. The skp1 temperature-sensitive mutant exhibited abnormal distribution of spindle microtubules in meiosis II, which turned out to originate from abnormal bending of the spindle in meiosis I. Bent spindles were reported in mitosis of this mutant, but it remained unknown how SCF could affect spindle morphology. We found that the meiotic bent spindle in skp1 cells was due to a hypertension generated by chromosome entanglement. The spindle bending was suppressed by inhibiting double strand break (DSB) formation, indicating that the entanglement was generated by the meiotic recombination machinery. Consistently, Rhp51/Rad51-Rad22/Rad52 foci persisted until meiosis I in skp1 cells, proving accumulation of recombination intermediates. Intriguingly bent spindles were also observed in the mutant of Fbh1, an F-box protein containing the DNA helicase domain, which is involved in meiotic recombination. Genetic evidence suggested its cooperation with SCF/Skp1. Thus, SCF/Skp1 together with Fbh1 is likely to function in the resolution of meiotic recombination intermediates, thereby ensuring proper chromosome segregation

    The Smc5–Smc6 Complex Is Required to Remove Chromosome Junctions in Meiosis

    Get PDF
    Meiosis, a specialized cell division with a single cycle of DNA replication round and two consecutive rounds of nuclear segregation, allows for the exchange of genetic material between parental chromosomes and the formation of haploid gametes. The structural maintenance of chromosome (SMC) proteins aid manipulation of chromosome structures inside cells. Eukaryotic SMC complexes include cohesin, condensin and the Smc5–Smc6 complex. Meiotic roles have been discovered for cohesin and condensin. However, although Smc5–Smc6 is known to be required for successful meiotic divisions, the meiotic functions of the complex are not well understood. Here we show that the Smc5–Smc6 complex localizes to specific chromosome regions during meiotic prophase I. We report that meiotic cells lacking Smc5–Smc6 undergo catastrophic meiotic divisions as a consequence of unresolved linkages between chromosomes. Surprisingly, meiotic segregation defects are not rescued by abrogation of Spo11-induced meiotic recombination, indicating that at least some chromosome linkages in smc5–smc6 mutants originate from other cellular processes. These results demonstrate that, as in mitosis, Smc5-Smc6 is required to ensure proper chromosome segregation during meiosis by preventing aberrant recombination intermediates between homologous chromosomes
    corecore