115 research outputs found

    Three-body Recombination of Lithium-6 Atoms with Large Negative Scattering Lengths

    Full text link
    The 3-body recombination rate at threshold for distinguishable atoms with large negative pair scattering lengths is calculated in the zero-range approximation. The only parameters in this limit are the 3 scattering lengths and the Efimov parameter, which can be complex valued. We provide semi-analytic expressions for the cases of 2 or 3 equal scattering lengths and we obtain numerical results for the general case of 3 different scattering lengths. Our general result is applied to the three lowest hyperfine states of Lithium-6 atoms. Comparisons with recent experiments provide indications of loss features associated with Efimov trimers near the 3-atom threshold.Comment: 4 pages, 4 figures, agrees with published versio

    Polaron to molecule transition in a strongly imbalanced Fermi gas

    Full text link
    A single down spin Fermion with an attractive, zero range interaction with a Fermi sea of up-spin Fermions forms a polaronic quasiparticle. The associated quasiparticle weight vanishes beyond a critical strength of the attractive interaction, where a many-body bound state is formed. From a variational wavefunction in the molecular limit, we determine the critical value for the polaron to molecule transition. The value agrees well with the diagrammatic Monte Carlo results of Prokof'ev and Svistunov and is consistent with recent rf-spectroscopy measurements of the quasiparticle weight by Schirotzek et. al. In addition, we calculate the contact coefficient of the strongly imbalanced gas, using the adiabatic theorem of Tan and discuss the implications of the polaron to molecule transition for the phase diagram of the attractive Fermi gas at finite imbalance.Comment: 10 pages, 4 figures, RevTex4, minor changes, references adde

    Efimov Physics in 6Li Atoms

    Full text link
    A new narrow 3-atom loss resonance associated with an Efimov trimer crossing the 3-atom threshold has recently been discovered in a many-body system of ultracold 6Li atoms in the three lowest hyperfine spin states at a magnetic field near 895 G. O'Hara and coworkers have used measurements of the 3-body recombination rate in this region to determine the complex 3-body parameter associated with Efimov physics. Using this parameter as the input, we calculate the universal predictions for the spectrum of Efimov states and for the 3-body recombination rate in the universal region above 600 G where all three scattering lengths are large. We predict an atom-dimer loss resonance at (672 +/- 2) G associated with an Efimov trimer disappearing through an atom-dimer threshold. We also predict an interference minimum in the 3-body recombination rate at (759 +/- 1) G where the 3-spin mixture may be sufficiently stable to allow experimental study of the many-body system.Comment: 27 pages, 9 figures, REVTeX4, published versio

    Fermi-Polaron: Diagrammatic Monte Carlo for Divergent Sign-Alternating Series

    Get PDF
    Diagrammatic Monte Carlo approach is applied to a problem of a single spin-down fermion resonantly interacting with the sea of ideal spin-up fermions. On one hand, we develop a generic, sign-problem tolerant, method of exact numerical solution of polaron-type models. On the other hand, our solution is important for understanding the phase diagram and properties of the BCS-BEC crossover in the strongly imbalanced regime. This is the first, and possibly characteristic, example of how the Monte Carlo approach can be applied to a divergent sign-alternating diagrammatic series.Comment: 4 pages, 7 figure

    Atom-dimer scattering length for fermions with different masses: analytical study of limiting cases

    Full text link
    We consider the problem of obtaining the scattering length for a fermion colliding with a dimer, formed from a fermion identical to the incident one and another different fermion. This is done in the universal regime where the range of interactions is short enough so that the scattering length aa for non identical fermions is the only relevant quantity. This is the generalization to fermions with different masses of the problem solved long ago by Skorniakov and Ter-Martirosian for particles with equal masses. We solve this problem analytically in the two limiting cases where the mass of the solitary fermion is very large or very small compared to the mass of the two other identical fermions. This is done both for the value of the scattering length and for the function entering the Skorniakov-Ter-Martirosian integral equation, for which simple explicit expressions are obtained.Comment: Very simple form for the solution added; conclusion adde

    Dimer-atom scattering between two identical fermions and a third particle

    Full text link
    We use the diagrammatic TT-matrix approach to analyze the three-body scattering problem between two identical fermions and a third particle (which could be a different species of fermion or a boson). We calculate the s-wave dimer-atom scattering length for all mass ratios, and our results exactly match the results of Petrov. In particular, we list the exact dimer-atom scattering lengths for all available two-species Fermi-Fermi and Bose-Fermi mixtures. In addition, unlike that of the equal-mass particles case where the three-body scattering TT-matrix decays monotonically as a function of the outgoing momentum, we show that, after an initial rapid drop, this function changes sign and becomes negative at large momenta and then decays slowly to zero when the mass ratio of the fermions to the third particle is higher than a critical value (around 6.5). As the mass ratio gets higher, modulations of the TT-matrix become more apparent with multiple sign changes, related to the "fall of a particle to the center" phenomenon and to the emergence of three-body Efimov bound states.Comment: 6 pages, 3 figures, and 2 table

    Equation of state of a polarized Fermi gas in the Bose-Einstein Condensate limit

    Full text link
    We present a theoretical study of the BEC-BCS crossover in the Bose-Einstein-Condensate regime (BEC), in the case of an unequal number of fermions of two species. We take full account of the composite nature of the dimers made of fermions. In the limit of low densities, we calculate the ground state energy of the system, or equivalentely the chemical potentials of each species as well as the one-particle gap and the energy of an "impurity" immersed in a Fermi sea. For the chemical potentials we go up to order (density)^{4/3}.The results found involve the exact atom-dimer a_{AD} and dimer-dimer a_{DD} scattering lengths and therefore include the 3 and 4-body problems in the manybody problem. We briefly comment on the importance of the different mean-field corrections for recent experiments.Comment: 6 figures; revised versio

    Range Corrections to Three-Body Observables near a Feshbach Resonance

    Full text link
    A non-relativistic system of three identical particles will display a rich set of universal features known as Efimov physics if the scattering length a is much larger than the range l of the underlying two-body interaction. An appropriate effective theory facilitates the derivation of both results in the |a| goes to infinity limit and finite-l/a corrections to observables of interest. Here we use such an effective-theory treatment to consider the impact of corrections linear in the two-body effective range, r_s on the three-boson bound-state spectrum and recombination rate for |a| much greater than |r_s|. We do this by first deriving results appropriate to the strict limit |a| goes to infinity in coordinate space. We then extend these results to finite a using once-subtracted momentum-space integral equations. We also discuss the implications of our results for experiments that probe three-body recombination in Bose-Einstein condensates near a Feshbach resonance.Comment: 28 pages, 3 figure

    Bound states in a quasi-two-dimensional Fermi gas

    Get PDF
    We consider the problem of N identical fermions of mass M and one distinguishable particle of mass m interacting via short-range interactions in a confined quasi-two-dimensional (quasi-2D) geometry. For N=2 and mass ratios M/m<13.6, we find non-Efimov trimers that smoothly evolve from 2D to 3D. In the limit of strong 2D confinement, we show that the energy of the N+1 system can be approximated by an effective two-channel model. We use this approximation to solve the 3+1 problem and we find that a bound tetramer can exist for mass ratios M/m as low as 5 for strong confinement, thus providing the first example of a universal, non-Efimov tetramer involving three identical fermions.Comment: 5 pages, 4 figure

    Fermi-Fermi Mixtures in the Strong Attraction Limit

    Full text link
    The phase diagrams of low density Fermi-Fermi mixtures with equal or unequal masses and equal or unequal populations are described at zero and finite temperatures in the strong attraction limit. In this limit, the Fermi-Fermi mixture can be described by a weakly interacting Bose-Fermi mixture, where the bosons correspond to Feshbach molecules and the fermions correspond to excess atoms. First, we discuss the three and four fermion scattering processes, and use the exact boson-fermion and boson-boson scattering lengths to generate the phase diagrams in terms of the underlying fermion-fermion scattering length. In three dimensions, in addition to the normal and uniform superfluid phases, we find two stable non-uniform states corresponding to (1) phase separation between pure unpaired (excess) and pure paired fermions (molecular bosons); and (2) phase separation between pure excess fermions and a mixture of excess fermions and molecular bosons. Lastly, we also discuss the effects of the trapping potential in the density profiles of condensed and non-condensed molecular bosons, and excess fermions at zero and finite temperatures, and discuss possible implications of our findings to experiments involving mixtures of ultracold fermions.Comment: 12 Pages, 6 Figures and 1 Tabl
    • …
    corecore