23,968 research outputs found
Isovector spin-singlet (T=1, S=0) and isoscalar spin-triplet (T=0, S=1) pairing interactions and spin-isospin response
We review several experimental and theoretical advances that emphasise common
aspects of the study of T=1 and T=0 pairing correlations in nuclei. We first
discuss several empirical evidences of the special role played by the T=1
pairing interaction. In particular, we show the peculiar features of the
nuclear pairing interaction in the low density regime, and possible outcomes
such as the BCS-BEC crossover in nuclear matter and, in an analogous way, in
loosely bound nuclei. We then move to the competition between T=1 and T=0
pairing correlations. The effect of such competition on the low-lying spectra
is studied in N=Z odd-odd nuclei by using a three-body model; it is shown that
the inversion of the 0+ and 1+ states near the ground state, and the strong
magnetic dipole transitions between them, can be considered as a clear
manifestation of strong T=0 pairing correlations in these nuclei. The effect of
T=0 pairing correlations is also quite evident if one studies charge-changing
transitions. The Gamow-Teller (GT) states in N=Z+2 nuclei are studied here by
using self-consistent HFB+QRPA calculations in which the T=0 pairing
interaction is taken into account. Strong GT states are found, near the ground
state of daughter nuclei; these are compared with available experimental data
from charge-exchange reactions, and such comparison can pinpoint the value of
the strength of the T=0 interaction. Pair transfer reactions are eventually
discussed: while two-neutron transfer has been long proposed as a tool to
measure the T=1 superfluidity in the nuclear ground states, the study of
deuteron transfer is still in its infancy, despite its potential interest in
revealing effects coming from both T=1 and T=0 interactions.Comment: Paper submitted to Physica Scripta for inclusion in the Focus Issue
entitled "Focus Issue on Nuclear Structure: Celebrating the 75 Nobel Prize"
(by A. Bohr and B.R. Mottelson). arXiv admin note: text overlap with
arXiv:nucl-th/0512021 by other author
Is perpendicular magnetic anisotropy essential to all-optical ultrafast spin reversal in ferromagnets?
All-optical spin reversal presents a new opportunity for spin manipulations,
free of a magnetic field. Most of all-optical-spin-reversal ferromagnets are
found to have a perpendicular magnetic anisotropy (PMA), but it has been
unknown whether PMA is necessary for the spin reversal. Here we theoretically
investigate magnetic thin films with either PMA or in-plane magnetic anisotropy
(IMA). Our results show that the spin reversal in IMA systems is possible, but
only with a longer laser pulse and within a narrow laser parameter region. The
spin reversal does not show a strong helicity dependence where the left- and
right-circularly polarized light lead to the identical results. By contrast,
the spin reversal in PMA systems is robust, provided both the spin angular
momentum and laser field are strong enough while the magnetic anisotropy itself
is not too strong. This explains why experimentally the majority of all-optical
spin-reversal samples are found to have strong PMA and why spins in Fe
nanoparticles only cant out of plane. It is the laser-induced spin-orbit torque
that plays a key role in the spin reversal. Surprisingly, the same spin-orbit
torque results in laser-induced spin rectification in spin-mixed configuration,
a prediction that can be tested experimentally. Our results clearly point out
that PMA is essential to the spin reversal, though there is an opportunity for
in-plane spin reversal.Comment: 20 pages, 4 figures and one tabl
Switching ferromagnetic spins by an ultrafast laser pulse: Emergence of giant optical spin-orbit torque
Faster magnetic recording technology is indispensable to massive data storage
and big data sciences. {All-optical spin switching offers a possible solution},
but at present it is limited to a handful of expensive and complex rare-earth
ferrimagnets. The spin switching in more abundant ferromagnets may
significantly expand the scope of all-optical spin switching. Here by studying
40,000 ferromagnetic spins, we show that it is the optical spin-orbit torque
that determines the course of spin switching in both ferromagnets and
ferrimagnets. Spin switching occurs only if the effective spin angular momentum
of each constituent in an alloy exceeds a critical value. Because of the strong
exchange coupling, the spin switches much faster in ferromagnets than
weakly-coupled ferrimagnets. This establishes a paradigm for all-optical spin
switching. The resultant magnetic field (65 T) is so big that it will
significantly reduce high current in spintronics, thus representing the
beginning of photospintronics.Comment: 12 page2, 6 figures. Accepted to Europhysics Letters (2016). Extended
version with the supplementary information. Contribution from Indiana State
University,Europhysics Letters (2016
Active Thrusting and Folding Along the Northern Tien Shan and Late Cenozoic Rotation of the Tarim Relative to Dzungaria and Kazakhstan
We have studied geometries and rates of late Cenozoic thrust faulting and folding along the northern piedmont of the Tien Shan mountain belt, West of Urumqi, where the M= 8.3 Manas earthquake occurred on December 23, 1906. The northern range of the Tien Shan, rising above 5000 m, overthrusts a flexural foredeep, filled with up to 11,000 m of sediment, of the Dzungarian basement. Our fieldwork reveals that the active thrust reaches the surface 30 km north of the range front, within a 200-km-long zone of Neogene-Quaternary anticlines. Fault scarps are clearest across inset terraces within narrow valleys incised through the anticlines by large rivers flowing down from the range. In all the valleys, the scarps offset vertically the highest terrace surface by the same amount (10.2±0.7 m). Inferring an early Holocene age (10±2 kyr) for this terrace, which is continuous with the largest recent fans of the piedmont, yields a rate of vertical throw of 1.0±0.3mm/yr on the main active thrust at the surface. A quantitative morphological analysis of the degradation of terrace edges that are offset by the thrust corroborates such a rate and yields a mass diffusivity of 5.5±2.5 m^2/kyr. A rather fresh surface scarp, 0.8±0.15 m high, that is unlikely to result from shallow earthquakes with 6 < M < 7 in the last 230 years, is visible at the extremities of the main fold zone. We associate this scarp with the 1906 Manas earthquake and infer that a structure comprising a deep basement ramp under the range, gently dipping flats in the foreland, and shallow ramps responsible for the formation of the active, fault propagation anticlines could have been activated by that earthquake. If so, the return period of a 1906 type event would be 850 ±380 years. The small size of the scarp for an earthquake of this magnitude suggests that a large fraction of the slip at depth (≈2/3) is taken up by incremental folding near the surface. Comparable earthquakes might activate flat detachments and ramp anticlines at a distance from the front of other rising Quaternary ranges such as the San Gabriel mountains in California or the Mont Blanc-Aar massifs in the Alps. We estimate the finite Cenozoic shortening of the folded Dzungarian sediments to be of the order of 30 km and the Cenozoic shortening rate to have been 3 ± 1.5 mm/yr. Assuming comparable shortening along the Tarim piedmont and minor additional active thrusting within the mountain belt, we infer the rate of shortening across the Tien Shan to be at least 6 ± 3 mm/yr at the longitude of Manas (≈85.5°E). A total shortening of 125±30 km is estimated from crustal thickening, assuming local Airy isostatic equilibrium. Under the same assumption, serial N-S sections imply that Cenozoic shortening across the belt increases westwards to 203±50 km at the longitude of Kashgar (≈ 76 °E), as reflected by the westward increase of the width of the belt. This strain gradient implies a clockwise rotation of Tarim relative to Dzungaria and Kazakhstan of 7±2.5° around a pole located near the eastern extremity of the Tien Shan, west of Hami (≈96°E, 43.5°N), comparable to that revealed by paleomagnetism between Tarim and Dzungaria (8.6° ± 8.7°). A 6 mm/yr rate of shortening at the longitude of Manas would imply a rate of rotation of 0.45°/m.y. and would be consistent with a shortening rate of 12 mm/yr north of Kashgar. Taking such values to be representative of Late Cenozoic rates would place the onset of reactivation of the Tien Shan by the India-Asia collision in the early to middle Miocene (16 +22/−9 m.y.), in accord with the existence of particularly thick late Neogene and Quaternary deposits. Such reactivation would thus have started much later than the collision, roughly at the time of the great mid-Miocene changes in tectonic regimes, denudation and sedimentation rates observed in southeast Asia, the Himalayas and the Bay of Bengal, and of the correlative rapid change in seawater Sr isotopic ratio (20 to 15 Ma). Like these other changes, the rise of the Tien Shan might be a distant consequence of the end of Indochina's escape
Quasi-particle random phase approximation with quasi-particle-vibration coupling: application to the Gamow-Teller response of the superfluid nucleus Sn
We propose a self-consistent quasi-particle random phase approximation (QRPA)
plus quasi-particle-vibration coupling (QPVC) model with Skyrme interactions to
describe the width and the line shape of giant resonances in open-shell nuclei,
in which the effect of superfluidity should be taken into account in both the
ground state and the excited states. We apply the new model to the Gamow-Teller
resonance in the superfluid nucleus Sn, including both the isoscalar
spin-triplet and the isovector spin-singlet pairing interactions. The strength
distribution in Sn is well reproduced and the underlying microscopic
mechanisms, related to QPVC and also to isoscalar pairing, are analyzed in
detail.Comment: 32 pages, 11 figures, 4 table
Magnetic spin moment reduction in photoexcited ferromagnets through exchange interaction quenching: Beyond the rigid band approximation
The exchange interaction among electrons is one of the most fundamental
quantum mechanical interactions in nature and underlies any magnetic phenomena
from ferromagnetic ordering to magnetic storage. The current technology is
built upon a thermal or magnetic field, but a frontier is emerging to directly
control magnetism using ultrashort laser pulses. However, little is known about
the fate of the exchange interaction. Here we report unambiguously that
photoexcitation is capable of quenching the exchange interaction in all three
ferromagnetic metals. The entire process starts with a small number of
photoexcited electrons which build up a new and self-destructive potential that
collapses the system into a new state with a reduced exchange splitting. The
spin moment reduction follows a Bloch-like law as , where is
the absorbed photon energy and is a scaling exponent. A good agreement
is found between the experimental and our theoretical results. Our findings may
have a broader implication for dynamic electron correlation effects in
laser-excited iron-based superconductors, iron borate, rare-earth
orthoferrites, hematites and rare-earth transition metal alloys.Comment: 16 pages, 3 figures, one supplementary material fil
First-principles and model simulation of all-optical spin reversal
All-optical spin switching is a potential trailblazer for information storage
and communication at an unprecedented fast rate and free of magnetic fields.
However, the current wisdom is largely based on semiempirical models of
effective magnetic fields and heat pulses, so it is difficult to provide
high-speed design protocols for actual devices. Here, we carry out a massively
parallel first-principles and model calculation for thirteen spin systems and
magnetic layers, free of any effective field, to establish a simpler and
alternative paradigm of laser-induced ultrafast spin reversal and to point out
a path to a full-integrated photospintronic device. It is the interplay of the
optical selection rule and sublattice spin orderings that underlines seemingly
irreconcilable helicity-dependent/independent switchings. Using realistic
experimental parameters, we predict that strong ferrimagnets, in particular,
Laves phase C15 rare-earth alloys, meet the telecommunication energy
requirement of 10 fJ, thus allowing a cost-effective subpicosecond laser to
switch spin in the GHz region.Comment: 23 pages, 6 figures and one tabl
- …