22,918 research outputs found

    Circuit QED and sudden phase switching in a superconducting qubit array

    Full text link
    Superconducting qubits connected in an array can form quantum many-body systems such as the quantum Ising model. By coupling the qubits to a superconducting resonator, the combined system forms a circuit QED system. Here, we study the nonlinear behavior in the many-body state of the qubit array using a semiclassical approach. We show that sudden switchings as well as a bistable regime between the ferromagnetic phase and the paramagnetic phase can be observed in the qubit array. A superconducting circuit to implement this system is presented with realistic parameters .Comment: 4 pages, 3 figures, submitted for publication

    On the Treves theorem for the AKNS equation

    Full text link
    According to a theorem of Treves, the conserved functionals of the AKNS equation vanish on all pairs of formal Laurent series of a specified form, both of them with a pole of the first order. We propose a new and very simple proof for this statement, based on the theory of B\"acklund transformations; using the same method, we prove that the AKNS conserved functionals vanish on other pairs of Laurent series. The spirit is the same of our previous paper on the Treves theorem for the KdV, with some non trivial technical differences.Comment: LaTeX, 16 page

    Cosmological implications of dwarf spheroidal chemical evolution

    Full text link
    The chemical properties of dwarf spheroidals in the local group are shown to be inconsistent with star formation being truncated after the reionization epoch (z~8). Enhanced levels of [Ba/Y] in stars in dwarf spheroidals like Sculptor indicate strong s-process production from low-mass stars whose lifetimes are comparable with the duration of the pre-reionization epoch. The chemical evolution of Sculptor is followed using a model with SNeII and SNeIa feedback and mass- and metallicity-dependent nucleosynthetic yields for elements from H to Pb. We are unable to reproduce the Ba/Y ratio unless stars formed over an interval long enough for the low-mass stars to pollute the interstellar medium with s-elements. This robust result challenges the suggestion that most of the local group dwarf spheroidals are fossils of reionization and supports the case for large initial dark matter halos.Comment: 7 pages, 4 figures. Accepted for publication in ApJ. Minor changes following referee repor

    Deterministic Generation of Entangled Photons in Superconducting Resonator Arrays

    Full text link
    We present a scheme for the deterministic generation of entangled photon pairs in a superconducting resonator array. The resonators form a Jaynes-Cummings lattice via the coupling to superconducting qubits, and the Kerr-like nonlinearity arises due to the coupling.We show that entangled photons can be generated on demand by applying spectroscopic techniques and exploiting the nonlinearity and symmetry in the resonators. The scheme is robust against small parameter spreads due to fabrication errors. Our findings can be used as a key element for quantum information processing in superconducting quantum circuits.Comment: 4 pages, 3 figure

    Microstructure and Fe-vacancy ordering in the KFexSe2 superconducting system

    Full text link
    Structural investigations by means of transmission electron microscopy (TEM) on KFexSe2 with 1.5 \leq x \leq 1.8 have revealed a rich variety of microstructure phenomena, the KFe1.5Se2 crystal often shows a superstructure modulation along the [310] zone-axis direction, this superstructure can be well interpreted by the Fe-vacancy order within the a-b plane. Increase of Fe-concentration in the KFexSe2 materials could not only result in the appearance of superconductivity but also yield clear alternations of microstructure. Structural inhomogeneity, the complex superstructures and defect structures in the superconducting KFe1.8Se2 sample have been investigated based on the high-resolution TEM.Comment: 13 pages, 4 figure

    Two-qubit Quantum Logic Gate in Molecular Magnets

    Full text link
    We proposed a scheme to realize a controlled-NOT quantum logic gate in a dimer of exchange coupled single-molecule magnets, [Mn4]2[\textrm{Mn}_4]_2. We chosen the ground state and the three low-lying excited states of a dimer in a finite longitudinal magnetic field as the quantum computing bases and introduced a pulsed transverse magnetic field with a special frequency. The pulsed transverse magnetic field induces the transitions between the quantum computing bases so as to realize a controlled-NOT quantum logic gate. The transition rates between the quantum computing bases and between the quantum computing bases and other excited states are evaluated and analyzed.Comment: 7 pages, 2 figure

    Flat bidifferential ideals and semihamiltonian PDEs

    Full text link
    In this paper we consider a class of semihamiltonian systems characterized by the existence of a special conservation law. The density and the current of this conservation law satisfy a second order system of PDEs which has a natural interpretation in the theory of flat bifferential ideals. The class of systems we consider contains important well-known examples of semihamiltonian systems. Other examples, like genus 1 Whitham modulation equations for KdV, are related to this class by a reciprocal trasformation.Comment: 18 pages. v5: formula (36) corrected; minor change
    • …
    corecore