239 research outputs found
Quantum interference initiated super- and subradiant emission from entangled atoms
We calculate the radiative characteristics of emission from a system of
entangled atoms which can have a relative distance larger than the emission
wavelength. We develop a quantum multipath interference approach which explains
both super- and subradiance though the entangled states have zero dipole
moment. We derive a formula for the radiated intensity in terms of different
interfering pathways. We further show how the interferences lead to directional
emission from atoms prepared in symmetric W-states. As a byproduct of our work
we show how Dicke's classic result can be understood in terms of interfering
pathways. In contrast to the previous works on ensembles of atoms, we focus on
finite numbers of atoms prepared in well characterized states.Comment: 10 pages, 8 figures, 2 Table
Nonlocality from N>2 independent single-photon emitters
We demonstrate that intensity correlations of second order in the fluorescence light of N>2 single-photon emitters may violate locality while the visibility of the signal remains below 1/√2≈71%. For this, we derive a homogeneous Bell-Wigner-type inequality, which can be applied to a broad class of experimental setups. We trace the violation of this inequality back to path entanglement created by the process of detection
Creating path entanglement and violating bell inequalities by independent photon sources
We demonstrate a novel approach of violating position-dependent Bell inequalities by photons emitted via independent single photon sources in free space. We trace this violation back to path entanglement created a posteriori by the selection of modes due to the process of detection
Quantum interference and non-locality of independent photons from disparate sources
We quantitatively investigate the non-classicality and non-locality of a
whole new class of mixed disparate quantum and semiquantum photon sources at
the quantum-classical boundary. The latter include photon added thermal and
photon added coherent sources, experimentally investigated recently by Zavatta
et al. [Phys. Rev. Lett. 103, 140406 (2009)]. The key quantity in our
investigations is the visibility of the corresponding photon-photon correlation
function. We present explicit results on the violations of the Cauchy-Schwarz
inequality - which is a measure of nonclassicality - as well as of Bell-type
inequalities.Comment: 9 pages, 3 figure
What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET
With the establishment of ceilometer networks by national weather services, a discussion commenced to which extent these simple backscatter lidars can be used for aerosol research. Though primarily designed for the detection of clouds it was shown that at least observations of the vertical structure of the boundary layer might be possible. However, an assessment of the potential of ceilometers for the quantitative retrieval of aerosol properties is still missing. In this paper we discuss different retrieval methods to derive the aerosol backscatter coefficient beta(p),with special focus on the calibration of the ceilometers. Different options based on forward and backward integration methods are compared with respect to their accuracy and applicability. It is shown that advanced lidar systems such as those being operated in the framework of the European Aerosol Research Lidar Network (EARLINET) are excellent tools for the calibration, and thus beta(p) retrievals based on forward integration can readily be implemented and used for real-time applications. Furthermore, we discuss uncertainties introduced by incomplete overlap, the unknown lidar ratio, and water vapor absorption. The latter is relevant for the very large number of ceilometers operating in the spectral range around lambda = 905-910 nm. The accuracy of the retrieved beta(p) mainly depends on the accuracy of the calibration and the long-term stability of the ceilometer. Under favorable conditions, a relative error of beta(p) on the order of 10% seems feasible. In the case of water vapor absorption, corrections assuming a realistic water vapor distribution and laser spectrum are indispensable;otherwise errors on the order of 20% could occur. From case studies it is shown that ceilometers can be used for the reliable detection of elevated aerosol layers below 5 km, and can contribute to the validation of chemistry transport models, e. g.,the height of the boundary layer. However, the exploitation of ceilometer measurements is still in its infancy, so more studies are urgently needed to consolidate the present state of knowledge, which is based on a limited number of case studies
- …