4,289 research outputs found

    Quantum effects on Higgs-strahlung events at Linear Colliders within the general 2HDM

    Get PDF
    The associated production of neutral Higgs bosons with the Z gauge boson is investigated in the context of the future linear colliders, such as the ILC and CLIC, within the general two-Higgs-doublet model (2HDM). We compute the corresponding production cross-sections at one-loop, in full consistency with the available theoretical and phenomenological constraints. We find that the wave-function renormalization corrections to the external Higgs fields are the dominant source of the quantum effects, which turn out to be large and negative, and located predominantly in the region around \tan\beta=1 and moderate values of the parameter \lambda_5 (being \lambda_5 < 0). This behavior can be ultimately traced back to the enhancement potential of the triple Higgs boson self-couplings, a trademark feature of the 2HDM with no counterpart in the Higgs sector of the Minimal Supersymmetric Standard Model. The predicted Higgs-strahlung rates comfortably reach a few tens of femtobarn, which means barely 10^3 - 10^4 events per 500 inverse femtobarn of integrated luminosity. Due to their great complementarity, we argue that the combined analysis of the Higgs-strahlung events and the previously computed one-loop Higgs-pair production processes could be instrumental to probe the structure of the Higgs sector at future linac facilities.Comment: LaTeX, 16 pages, 9 Figures, 2 Tables. Extended discussion, references added, matches published version in Phys. Rev.

    Water production in comet 81P/Wild 2 as determined by Herschel/HIFI

    Get PDF
    The high spectral resolution and sensitivity of Herschel/HIFI allows for the detection of multiple rotational water lines and accurate determinations of water production rates in comets. In this Letter we present HIFI observations of the fundamental 1_(10)–1_(01) (557 GHz) ortho and 1_(11)–0_(00) (1113 GHz) para rotational transitions of water in comet 81P/Wild 2 acquired in February 2010. We mapped the extent of the water line emission with five point scans. Line profiles are computed using excitation models which include excitation by collisions with electrons and neutrals and solar infrared radiation. We derive a mean water production rate of 1.0 × 10^(28) molecules s^(−1) at a heliocentric distance of 1.61 AU about 20 days before perihelion, in agreement with production rates measured from the ground using observations of the 18-cm OH lines. Furthermore, we constrain the electron density profile and gas kinetic temperature, and estimate the coma expansion velocity by fitting the water line shapes

    The Vertical Structure of Planet-induced Gaps in Proto-Planetary Discs

    Full text link
    Giant planets embedded in circumstellar discs are expected to open gaps in these discs. We examine the vertical structure of the gap edges. We find that the planet excites spiral arms with significant (Mach number of a half) vertical motion of the gas, and discuss the implications of these motions. In particular, the spiral arms will induce strong vertical stirring of the dust, making the edge appeared `puffed up' relative to the bulk of the disc. Infra-red observations (sensitive to dust) would be dominated by the light from the thick inner edge of the disc. Sub-millimetre observations (sensitive to gas velocities) would appear to be hot in `turbulent' motions (actually the ordered motion caused by the passage of the spiral arms), but cold in chemistry. Resolved sub-millimetre maps of circumstellar discs might even be able to detect the spiral arms directly.Comment: Revision adds new data, and corrects physical intepretatio

    Modelling Circumbinary Gas Flows in Close T Tauri Binaries

    Full text link
    Young close binaries open central gaps in the surrounding circumbinary accretion disc, but the stellar components may still gain mass from gas crossing through the gap. It is not well understood how this process operates and how the stellar components are affected by such inflows. Our main goal is to investigate how gas accretion takes place and evolves in close T Tauri binary systems. In particular, we model the accretion flows around two close T Tauri binaries, V4046 Sgr and DQ Tau, both showing periodic changes in emission lines, although their orbital characteristics are very different. In order to derive the density and velocity maps of the circumbinary material, we employ two-dimensional hydrodynamic simulations with a locally isothermal equation of state. The flow patterns become quasi-stable after a few orbits in the frame co-rotating with the system. Gas flows across the circumbinary gap through the co-rotating Lagrangian points, and local circumstellar discs develop around both components. Spiral density patterns develop in the circumbinary disc that transport angular momentum efficiently. Mass is preferentially channelled towards the primary and its circumstellar disc is more massive than the disc around the secondary. We also compare the derived density distribution to observed line profile variability. The line profile variability tracing the gas flows in the central cavity shows clear similarities with the corresponding observed line profile variability in V4046 Sgr, but only when the local circumstellar disc emission was excluded. Closer to the stars normal magnetospheric accretion may dominate while further out the dynamic accretion process outlined here dominates. Periodic changes in the accretion rates onto the stars can explain the outbursts of line emission observed in eccentric systems such as DQ Tau.Comment: Accepted for publication in MNRA

    High Precision Photometry for K2 Campaign 1

    Get PDF
    The two reaction wheel K2 mission promises and has delivered new discoveries in the stellar and exoplanet fields. However, due to the loss of accurate pointing, it also brings new challenges for the data reduction processes. In this paper, we describe a new reduction pipeline for extracting high precision photometry from the K2 dataset, and present public light curves for the K2 Campaign 1 target pixel dataset. Key to our reduction is the derivation of global astrometric solutions from the target stamps, from which accurate centroids are passed on for high precision photometry extraction. We extract target light curves for sources from a combined UCAC4 and EPIC catalogue -- this includes not only primary targets of the K2 campaign 1, but also any other stars that happen to fall on the pixel stamps. We provide the raw light curves, and the products of various detrending processes aimed at removing different types of systematics. Our astrometric solutions achieve a median residual of ~ 0.13". For bright stars, our best 6.5 hour precision for raw light curves is ~20 parts per million (ppm). For our detrended light curves, the best 6.5 hour precisions achieved is ~15 ppm. We show that our detrended light curves have fewer systematic effects (or trends, or red-noise) than light curves produced by other groups from the same observations. Example light curves of transiting planets and a Cepheid variable candidate, are also presented. We make all light curves public, including the raw and de-trended photometry, at http://k2.hatsurveys.org.Comment: submitted to MNRA

    Ronciling Differences

    Get PDF
    In this paper we study a problem motivated by the management of changes in databases. It turns out that several such change scenarios, e.g., the separately studied problems of view maintenance (propagation of data changes) and view adaptation (propagation of view definition changes) can be unified as instances of query reformulation using views provided that support for the relational difference operator exists in the context of query reformulation. Exact query reformulation using views in positive relational languages is well understood, and has a variety of applications in query optimization and data sharing. Unfortunately, most questions about queries become undecidable in the presence of difference (or negation), whether we use the foundational set semantics or the more practical bag semantics. We present a new way of managing this difficulty by defining a novel semantics, Z- relations, where tuples are annotated with positive or negative integers. Z-relations conveniently represent data, insertions, and deletions in a uniform way, and can apply deletions with the union operator (deletions are tuples with negative counts). We show that under Z-semantics relational algebra (R A) queries have a normal form consisting of a single difference of positive queries, and this leads to the decidability of their equivalence.We provide a sound and complete algorithm for reformulating R A queries, including queries with difference, over Z-relations. Additionally, we show how to support standard view maintenanc

    Hyperelliptic Jacobians and isogenies

    Get PDF
    In this note we mainly consider abelian varieties isogenous to hyperelliptic Jacobians. In the first part we prove that a very general hyperelliptic Jacobian of genus is not isogenous to a non-hyperelliptic Jacobian. As a consequence we obtain that the intermediate Jacobian of a very general cubic threefold is not isogenous to a Jacobian. Another corollary tells that the Jacobian of a very general d-gonal curve of genus is not isogenous to a different Jacobian. In the second part we consider a closed subvariety of the moduli space of principally polarized varieties of dimension . We show that if a very general element of is dominated by the Jacobian of a curve C and , then C is not hyperelliptic. In particular, if the general element in is simple, its Kummer variety does not contain rational curves. Finally we show that a closed subvariety of dimension such that the Jacobian of a very general element of is dominated by a hyperelliptic Jacobian is contained either in the hyperelliptic or in the trigonal locus

    Fast path and polarisation manipulation of telecom wavelength single photons in lithium niobate waveguide devices

    Get PDF
    We demonstrate fast polarisation and path control of photons at 1550 nm in lithium niobate waveguide devices using the electro-optic effect. We show heralded single photon state engineering, quantum interference, fast state preparation of two entangled photons and feedback control of quantum interference. These results point the way to a single platform that will enable the integration of nonlinear single photon sources and fast reconfigurable circuits for future photonic quantum information science and technology.Comment: 6 page
    • 

    corecore