213 research outputs found
SN1987A: Revisiting the Data and the Correlation between Neutrino and Gravitational Detectors
We re-examine the data taken by the neutrino detectors during the supernova
SN1987A. It is found that the Kamiokande data, in addition to the well known
burst at 7:35 hours UT, show another one at 7:54 hours, with seven pulses in
6.2 seconds. This second burst supports the idea that the duration of the
collapse was much longer than a few seconds, as already suggested by the LSD
detection at 2:56 hours the same day, i.e. four and a half hours earlier. The
correlations between the gravitational wave detectors (Rome and Maryland) and
the neutrino detectors are also revisited. It is shown that the g.w. detectors
exhibit significant correlations with both the LSD and the Kamiokande detectors
over periods of one-two hours that are centered, in both cases, at the LSD
time.Comment: Presented at the VULCANO WOKSHOP 2008, Frontier Objects in
Astrophysics and Particle Physics, May 26-3
Dark Matter searches using gravitational wave bar detectors: quark nuggets and newtorites
Many experiments have searched for supersymmetric WIMP dark matter, with null
results. This may suggest to look for more exotic possibilities, for example
compact ultra-dense quark nuggets, widely discussed in literature with several
different names. Nuclearites are an example of candidate compact objects with
atomic size cross section. After a short discussion on nuclearites, the result
of a nuclearite search with the gravitational wave bar detectors Nautilus and
Explorer is reported. The geometrical acceptance of the bar detectors is 19.5
sr, that is smaller than that of other detectors used for similar
searches. However, the detection mechanism is completely different and is more
straightforward than in other detectors. The experimental limits we obtain are
of interest because, for nuclearites of mass less than g, we find a
flux smaller than that one predicted considering nuclearites as dark matter
candidates. Particles with gravitational only interactions (newtorites) are
another example. In this case the sensitivity is quite poor and a short
discussion is reported on possible improvements.Comment: published on Astroparticle Physics Sept 25th 2016 replaced fig 1
Increasing the bandwidth of resonant gravitational antennas: The case of Explorer
Resonant gravitational wave detectors with an observation bandwidth of tens
of hertz are a reality: the antenna Explorer, operated at CERN by the ROG
collaboration, has been upgraded with a new read-out. In this new
configuration, it exhibits an unprecedented useful bandwidth: in over 55 Hz
about its frequency of operation of 919 Hz the spectral sensitivity is better
than 10^{-20} /sqrt(Hz) . We describe the detector and its sensitivity and
discuss the foreseable upgrades to even larger bandwidths.Comment: 4 pages- 4 figures Acceted for publication on Physical Review Letter
Quark nuggets search using 2350 Kg gravitational waves aluminum bar detectors
The gravitational wave resonant detectors can be used as detectors of quark
nuggets, like nuclearites (nuclear matter with a strange quark). This search
has been carried out using data from two 2350 Kg, 2 K cooled, aluminum bar
detectors: NAUTILUS, located in Frascati (Italy), and EXPLORER, that was
located in CERN Geneva (CH). Both antennas are equipped with cosmic ray shower
detectors: signals in the bar due to showers are continuously detected and used
to characterize the antenna performances. The bar excitation mechanism is based
on the so called thermo-acoustic effect, studied on dedicated experiments that
use particle beams. This mechanism predicts that vibrations of bars are induced
by the heat deposited in the bar from the particle. The geometrical acceptance
of the bar detectors is 19.5 sr, that is smaller than that of other
detectors used for similar searches. However, the detection mechanism is
completely different and is more straightforward than in other detectors. We
will show the results of ten years of data from NAUTILUS (2003-2012) and 7
years from EXPLORER (2003-2009). The experimental limits we obtain are of
interest because, for nuclearites of mass less than grams, we find a
flux smaller than that one predicted considering nuclearites as dark matter
candidates.Comment: presented to the 33rd International Cosmic Ray Conference Rio de
Janeiro 201
Analysis of 3 years of data from the gravitational wave detectors EXPLORER and NAUTILUS
We performed a search for short gravitational wave bursts using about 3 years
of data of the resonant bar detectors Nautilus and Explorer. Two types of
analysis were performed: a search for coincidences with a low background of
accidentals (0.1 over the entire period), and the calculation of upper limits
on the rate of gravitational wave bursts. Here we give a detailed account of
the methodology and we report the results: a null search for coincident events
and an upper limit that improves over all previous limits from resonant
antennas, and is competitive, in the range h_rss ~1E-19, with limits from
interferometric detectors. Some new methodological features are introduced that
have proven successful in the upper limits evaluation.Comment: 12 pages, 12 figure
Search for Periodic Gravitational Wave Sources with the Explorer Detector
We have developped a procedure for the search of periodic signals in the data
of gravitational wave detectors. We report here the analysis of one year of
data from the resonant detector Explorer, searching for pulsars located in the
Galactic Center (GC). No signals with amplitude greater than , in the range 921.32-921.38 Hz, were observed using data
collected over a time period of 95.7 days, for a source located at
hours and degrees. Our
procedure can be extended for any assumed position in the sky and for a more
general all-sky search, even with a frequency correction at the source due to
the spin-down and Doppler effects.Comment: One zipped file (Latex+eps figures). 33 pages, 14 figures. This and
related material also at http://grwav3.roma1.infn.it
Complete model of a spherical gravitational wave detector with capacitive transducers. Calibration and sensitivity optimization
We report the results of a detailed numerical analysis of a real resonant
spherical gravitational wave antenna operating with six resonant two-mode
capacitive transducers read out by superconducting quantum interference devices
(SQUID) amplifiers. We derive a set of equations to describe the
electro-mechanical dynamics of the detector. The model takes into account the
effect of all the noise sources present in each transducer chain: the thermal
noise associated with the mechanical resonators, the thermal noise from the
superconducting impedance matching transformer, the back-action noise and the
additive current noise of the SQUID amplifier. Asymmetries in the detector
signal-to-noise ratio and bandwidth, coming from considering the transducers
not as point-like objects but as sensor with physically defined geometry and
dimension, are also investigated. We calculate the sensitivity for an
ultracryogenic, 30 ton, 2 meter in diameter, spherical detector with optimal
and non-optimal impedance matching of the electrical read-out scheme to the
mechanical modes. The results of the analysis is useful not only to optimize
existing smaller mass spherical detector like MiniGrail, in Leiden, but also as
a technological guideline for future massive detectors. Furthermore we
calculate the antenna patterns when the sphere operates with one, three and six
resonators. The sky coverage for two detectors based in The Netherlands and
Brasil and operating in coincidence is also estimated. Finally, we describe and
numerically verify a calibration and filtering procedure useful for diagnostic
and detection purposes in analogy with existing resonant bar detectors.Comment: 23 pages, 20 figures, codes of the simulations are available on
request by contacting the autho
Effect of cosmic rays on the resonant gravitational wave detector NAUTILUS at temperature T=1.5 K
The interaction between cosmic rays and the gravitational wave bar detector
NAUTILUS is experimentally studied with the aluminum bar at temperature of
T=1.5 K. The results are compared with those obtained in the previous runs when
the bar was at T=0.14 K. The results of the run at T = 1.5 K are in agreement
with the thermo-acoustic model; no large signals at unexpected rate are
noticed, unlike the data taken in the run at T = 0.14 K. The observations
suggest a larger efficiency in the mechanism of conversion of the particle
energy into vibrational mode energy when the aluminum bar is in the
superconductive status.Comment: 7 pages, 3 figures, 2 tables. Accepted by Physics Letters
MiniGRAIL progress report 2004
The MiniGRAIL detector was improved. The sphere was replaced by a slightly larger one, having a diameter of 68 cm (instead of 65 cm), reducing the resonant frequency by about 200 Hz to around 2.9 kHz. The last four masses of the attenuation system were machined to increase their resonant frequency and improve the attenuation around the resonant frequency of the sphere. In the new sphere, six holes were machined on the TIGA positions for easy mounting of the transducers. During the last cryogenic run, two capacitive transducers and a calibrator were mounted on the sphere. The first transducer was coupled to a double-stage SQUID amplifier having a commercial quantum design SQUID as a first stage and a DROS as a second stage. The second transducer was read by a single-stage quantum design SQUID. During the cryogenic run, the sphere was cooled down to 4 K. The two-stage SQUID had a flux noise of about 1.6 ÎŒ0 Hzâ1/2. The detector was calibrated and the sensitivity curve of MiniGRAIL was determined
- âŠ