148 research outputs found

    Insights on fungal solid-state fermentation for waste valorization : conidia and chitinase production in different reactor configurations

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICAltres ajuts: Arnau Sala also thanks Universitat Aut'onoma de Barcelona for a predoctoral scholarship.Different reactor configurations are paired with a wide variety of agro-industrial wastes of different biodegradability to produce fungal conidia by solid-state fermentation. This work presents a preliminary comparative study between packed-bed and tray reactor configurations to produce Beauveria bassiana and Trichoderma harzianum conidia using two different substrates in terms of biodegradability: rice husk or beer draff complemented with wood chips. Conidia production, mean temperature and respiration indexes have been analysed in most of the presented reactor configurations. Both strains showed higher conidia production when using beer draff complemented with wood chips as substrate due to the use of a mixture as substrate. When working with beer draff, chitinase analyses obtained similar profiles in both strains but higher overall values using TH. Conidia and chitinase production maximums were not achieved at the same time, having 2-3 days of difference depending on the strain. No significant differences in mean temperature were shown between most of the performed fermentations. As a result of the present work, further scaling of both packed bed and tray configurations using beer draff and wood chips to produce BB or TH conidia would be advisable. More experiments should be performed to optimize both conidia and chitinase productions to enhance the quality of the final product

    Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations

    Get PDF
    We show that full-image micro-PIV analysis in combination with images of transient particle motion is a powerful tool for experimental studies of acoustic radiation forces and acoustic streaming in microfluidic chambers under piezo-actuation in the MHz range. The measured steady-state motion of both large 5 um and small 1 um particles can be understood in terms of the acoustic eigenmodes or standing ultra-sound waves in the given experimental microsystems. This interpretation is supported by numerical solutions of the corresponding acoustic wave equation.Comment: RevTex, 10 pages, 9 eps figures; NOTE first authors changed his name to S. Melker Hagsater in the published versio

    Heterogeneity of genomic evolution and mutational profiles in multiple myeloma.

    Get PDF
    Multiple myeloma is an incurable plasma cell malignancy with a complex and incompletely understood molecular pathogenesis. Here we use whole-exome sequencing, copy-number profiling and cytogenetics to analyse 84 myeloma samples. Most cases have a complex subclonal structure and show clusters of subclonal variants, including subclonal driver mutations. Serial sampling reveals diverse patterns of clonal evolution, including linear evolution, differential clonal response and branching evolution. Diverse processes contribute to the mutational repertoire, including kataegis and somatic hypermutation, and their relative contribution changes over time. We find heterogeneity of mutational spectrum across samples, with few recurrent genes. We identify new candidate genes, including truncations of SP140, LTB, ROBO1 and clustered missense mutations in EGR1. The myeloma genome is heterogeneous across the cohort, and exhibits diversity in clonal admixture and in dynamics of evolution, which may impact prognostic stratification, therapeutic approaches and assessment of disease response to treatment

    Processed pseudogenes acquired somatically during cancer development.

    Get PDF
    Cancer evolves by mutation, with somatic reactivation of retrotransposons being one such mutational process. Germline retrotransposition can cause processed pseudogenes, but whether this occurs somatically has not been evaluated. Here we screen sequencing data from 660 cancer samples for somatically acquired pseudogenes. We find 42 events in 17 samples, especially non-small cell lung cancer (5/27) and colorectal cancer (2/11). Genomic features mirror those of germline LINE element retrotranspositions, with frequent target-site duplications (67%), consensus TTTTAA sites at insertion points, inverted rearrangements (21%), 5' truncation (74%) and polyA tails (88%). Transcriptional consequences include expression of pseudogenes from UTRs or introns of target genes. In addition, a somatic pseudogene that integrated into the promoter and first exon of the tumour suppressor gene, MGA, abrogated expression from that allele. Thus, formation of processed pseudogenes represents a new class of mutation occurring during cancer development, with potentially diverse functional consequences depending on genomic context

    Genetic Diversity in Wheat: Analysis using Diversity Arrays Technology (DArT) in bread and durum wheats

    Get PDF
    With increasing demands on the quality and quantity of food required now and in the future, improvements to current agriculture practices are required. Increased food production requires utilisation of more agricultural land, pushing crops into non- traditional areas. The need for advances in agricultural technologies are not only required for current crop varieties, but for new varieties with increased tolerance to environmental stresses. Technological improvement means better crop yields and reduced land, water, fertilizer and pesticide use. Diversity Arrays Technology (DArT) was used to study wheat diversity, specifically to identify polymorphic markers between various wheat cultivars for use in marker- assisted breeding programs. The hybridisation based technology was used to analyse various bread and durum wheat cultivars for increased understanding of genomic diversity. Analysis shows that DArT is able to discriminate between tissue samples from wheat cultivars grown under various environmental stresses with polymorphic markers identified between samples treated with differing salt, light and temperature conditions. Epigenetic diversity was analysed through methylation detection using DArT to identify a list of candidate polymorphic markers. Markers were identified using the methylation sensitive restriction enzyme McrBC to generate control and treated targets. Diversity through cultivar exploration, looking at breeding experiments between cultivars with phenotypic extremes to examine salt tolerance versus in-tolerance using DArT produced a recombinant inbred line genetic linkage map. Bulk segregant analysis was also used to group phenotypic samples. Candidate markers were identified between cultivars that can be used to genotyping tetraploid and hexaploid wheat cultivars for germplasm identification. In addition, the identification of trait-linked molecular markers, such as salt resistance, plant breeders can genotype individual plants and populations of cultivars to determine the most suitable cultivar to plant that best complements to its local environment. This eliminates the need for multiple planting cycles to optimize crop selections, and gives the plant breeder the highest possible chance for crop success (yield, quality, performance and cost)

    Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition.

    Get PDF
    About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage-fusion-bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors

    Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition

    Get PDF
    About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage–fusion–bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors

    Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection

    Get PDF
    Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome ( approximately 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods

    Mosquitoes LTR Retrotransposons: A Deeper View into the Genomic Sequence of Culex quinquefasciatus

    Get PDF
    A set of 67 novel LTR-retrotransposon has been identified by in silico analyses of the Culex quinquefasciatus genome using the LTR_STRUC program. The phylogenetic analysis shows that 29 novel and putatively functional LTR-retrotransposons detected belong to the Ty3/gypsy group. Our results demonstrate that, by considering only families containing potentially autonomous LTR-retrotransposons, they account for about 1% of the genome of C. quinquefasciatus. In previous studies it has been estimated that 29% of the genome of C. quinquefasciatus is occupied by mobile genetic elements
    corecore