219 research outputs found
X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation
Among organisms with chromosome-based mechanisms of sex determination, failure to equalize expression of X-linked genes between the sexes is typically lethal. In C. elegans, XX hermaphrodites halve transcription from each X chromosome to match the output of XO males. Here, we mapped the binding location of the condensin homolog DPY-27 and the zinc finger protein SDC-3, two components of the C. elegans dosage compensation complex (DCC). We observed strong foci of DCC binding on X, surrounded by broader regions of localization. Binding foci, but not adjacent regions of localization, were distinguished by clusters of a 10-bp DNA motif, suggesting a recruitment-and-spreading mechanism for X recognition. The DCC was preferentially bound upstream of genes, suggesting modulation of transcriptional initiation and polymerase-coupled spreading. Stronger DCC binding upstream of genes with high transcriptional activity indicated a mechanism for tuning DCC activity at specific loci. These data aid in understanding how proteins involved in higher-order chromosome dynamics can regulate transcription at individual loci
Role of Rhipicephalus bursa larvae in transstadial transmission and endemicity of Babesia ovis in chronically infected sheep
Babesia ovis, transmitted by Rhipicephalus bursa ticks, is the causative agent of ovine babesiosis, a disease characterized by fever, anemia, hemoglobinuria, and high mortality in sheep. This study investigates whether sheep that survived babesiosis without treatment can serve as a source of infection for B. ovis-free host-seeking R. bursa larvae in a later season. Three donor sheep were experimentally infected with B. ovis, and after six months, persistence of B. ovis was assessed through blood and tick transmission experiments. Blood from donor sheep was intravenously injected into three recipient sheep, while donor sheep were also infested with B. ovis-free R. bursa larvae. Engorged nymphs molted to adults, and new recipient sheep were infested with these ticks. All recipient sheep were monitored for B. ovis for 100 days using microscopic, serological, and molecular approaches. The presence of B. ovis was confirmed in the recipient sheep that received blood, leading to clinical infection in two. However, no B. ovis was detected in recipient sheep infested with ticks. These results suggest that sheep recovering from B. ovis infection do not serve as a source of infection for R. bursa larvae in subsequent seasons
Magnesium reduces calcification in bovine vascular smooth muscle cells in a dose-dependent manner
WOS: 000300421300010PubMed ID: 21750166Vascular calcification (VC), mainly due to elevated phosphate levels, is one major problem in patients suffering from chronic kidney disease. In clinical studies, an inverse relationship between serum magnesium and VC has been reported. However, there is only few information about the influence of magnesium on calcification on a cellular level available. Therefore, we investigated the effect of magnesium on calcification induced by beta-glycerophosphate (BGP) in bovine vascular smooth muscle cells (BVSMCs). BVSMCs were incubated with calcification media for 14 days while simultaneously increasing the magnesium concentration. Calcium deposition, transdifferentiation of cells and apoptosis were measured applying quantification of calcium, von Kossa and Alizarin red staining, real-time reverse transcription-polymerase chain reaction and annexin V staining, respectively. Calcium deposition in the cells dramatically increased with addition of BGP and could be mostly prevented by co-incubation with magnesium. Higher magnesium levels led to inhibition of BGP-induced alkaline phosphatase activity as well as to a decreased expression of genes associated with the process of transdifferentiation of BVSMCs into osteoblast-like cells. Furthermore, estimated calcium entry into the cells decreased with increasing magnesium concentrations in the media. In addition, higher magnesium concentrations prevented cell damage (apoptosis) induced by BGP as well as progression of already established calcification. Higher magnesium levels prevented BVSMC calcification, inhibited expression of osteogenic proteins, apoptosis and further progression of already established calcification. Thus, magnesium is influencing molecular processes associated with VC and may have the potential to play a role for VC also in clinical situations.Fresenius Medical Care Deutschland GmbH, GermanyThis study was supported by Fresenius Medical Care Deutschland GmbH, Germany
Scientometric Analysis and Combined Density-Equalizing Mapping of Environmental Tobacco Smoke (ETS) Research
Background: Passive exposure to environmental tobacco smoke (ETS) is estimated to exert a major burden of disease. Currently, numerous countries have taken legal actions to protect the population against ETS. Numerous studies have been conducted in this field. Therefore, scientometric methods should be used to analyze the accumulated data since there is no such approach available so far. Methods and Results: A combination of scientometric methods and novel visualizing procedures were used, including density-equalizing mapping and radar charting techniques. 6,580 ETS-related studies published between 1900 and 2008 were identified in the ISI database. Using different scientometric approaches, a continuous increase of both quantitative and qualitative parameters was found. The combination with density-equalizing calculations demonstrated a leading position of the United States (2,959 items published) in terms of quantitative research activities. Charting techniques demonstrated that there are numerous bi- and multilateral networks between different countries and institutions in this field. Again, a leading position of American institutions was found. Conclusions: This is the first comprehensive scientometric analysis of data on global scientific activities in the field o
Recommended from our members
Optimization of a GCaMP calcium indicator for neural activity imaging
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Neuroscience 32 (2012): 13819-13840, doi:10.1523/JNEUROSCI.2601-12.2012.Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of “GCaMP5” sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.A.F. has been supported by a European Molecular Biology Organization long-term fellowship. Work in H.B.’s
laboratory was funded by the National Institutes of Health (NIH) Nanomedicine Development Center “Optical Control
of Biological Function,” and work in S.S.-H.W.’s laboratory was funded by NIH R01 NS045193
Outcomes of early switching from intravenous to oral antibiotics on medical wards
OBJECTIVES: To evaluate outcomes following implementation of a checklist with criteria for switching from intravenous (iv) to oral antibiotics on unselected patients on two general medical wards. METHODS: During a 12 month intervention study, a printed checklist of criteria for switching on the third day of iv treatment was placed in the medical charts. The decision to switch was left to the discretion of the attending physician. Outcome parameters of a 4 month control phase before intervention were compared with the equivalent 4 month period during the intervention phase to control for seasonal confounding (before-after study; April to July of 2006 and 2007, respectively): 250 episodes (215 patients) during the intervention period were compared with the control group of 176 episodes (162 patients). The main outcome measure was the duration of iv therapy. Additionally, safety, adherence to the checklist, reasons against switching patients and antibiotic cost were analysed during the whole year of the intervention (n = 698 episodes). RESULTS: In 38% (246/646) of episodes of continued iv antibiotic therapy, patients met all criteria for switching to oral antibiotics on the third day, and 151/246 (61.4%) were switched. The number of days of iv antibiotic treatment were reduced by 19% (95% confidence interval 9%-29%, P = 0.001; 6.0-5.0 days in median) with no increase in complications. The main reasons against switching were persisting fever (41%, n = 187) and absence of clinical improvement (41%, n = 185). CONCLUSIONS: On general medical wards, a checklist with bedside criteria for switching to oral antibiotics can shorten the duration of iv therapy without any negative effect on treatment outcome. The criteria were successfully applied to all patients on the wards, independently of the indication (empirical or directed treatment), the type of (presumed) infection, the underlying disease or the group of antibiotics being used
The Genomic Distribution and Function of Histone Variant HTZ-1 during C. elegans Embryogenesis
In all eukaryotes, histone variants are incorporated into a subset of nucleosomes to create functionally specialized regions of chromatin. One such variant, H2A.Z, replaces histone H2A and is required for development and viability in all animals tested to date. However, the function of H2A.Z in development remains unclear. Here, we use ChIP-chip, genetic mutation, RNAi, and immunofluorescence microscopy to interrogate the function of H2A.Z (HTZ-1) during embryogenesis in Caenorhabditis elegans, a key model of metazoan development. We find that HTZ-1 is expressed in every cell of the developing embryo and is essential for normal development. The sites of HTZ-1 incorporation during embryogenesis reveal a genome wrought by developmental processes. HTZ-1 is incorporated upstream of 23% of C. elegans genes. While these genes tend to be required for development and occupied by RNA polymerase II, HTZ-1 incorporation does not specify a stereotypic transcription program. The data also provide evidence for unexpectedly widespread independent regulation of genes within operons during development; in 37% of operons, HTZ-1 is incorporated upstream of internally encoded genes. Fewer sites of HTZ-1 incorporation occur on the X chromosome relative to autosomes, which our data suggest is due to a paucity of developmentally important genes on X, rather than a direct function for HTZ-1 in dosage compensation. Our experiments indicate that HTZ-1 functions in establishing or maintaining an essential chromatin state at promoters regulated dynamically during C. elegans embryogenesis
Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits.
Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure
- …