344 research outputs found

    The mass of the dark matter particle from theory and observations

    Get PDF
    We combine observed properties of galaxies as the core density and radius with the theoretical linear evolution of density fluctuations computed from first principles since the end of inflation till today. The halo radius r_0 is computed in terms of cosmological parameters. The theoretical density profiles rho(r)/rho(0) have an universal shape as a function of r/r_0 which reproduces the observations. We show that the linear approximation to the Boltzmann-Vlasov equation is valid for very large galaxies and correctly provides universal quantities which are common to all galaxies, as the surface density and density profile. By matching the theoretically computed surface density to its observed value we obtain (i) the decreasing of the phase-space density during the MD era (ii) the mass of the dark matter particle which turns to be between 1 and 2 keV and the decoupling temperature T_d which turns to be above 100 GeV (iii) the core vs. cusp discrimination: keV dark matter particles produce cored density profiles while wimps (m \sim 100 GeV, T_d \sim 5 GeV) produce cusped profiles at scales about 0.003 pc. These results are independent of the particle model and vary very little with the statistics of the dark matter particle. Non-universal galaxy quantities (which need to include non-linear effects as mergers and baryons) are reproduced in the linear approximation up to a factor of order one for the halo radius r_0, galaxy mass M_{gal}, halo central density rho_{0} and velocity dispersion sqrt{{\bar {v^2}}_{halo}} in the limiting case of large galaxies (both r_0 and M_{gal} large). This shows the power of the linear approximation scheme: although it cannot capture the whole content of the structure formation, it correctly provides universal quantities which as well as the main non-universal galaxy properties.Comment: 17 pages, 15 figures, improved and expanded version to appear in New Astronom

    Super-massive Black Hole Demography: the Match between the Local and Accreted Mass Functions

    Full text link
    We have performed a detailed analysis of the local super-massive black-hole (SMBH) mass function based on both kinematic and photometric data and derived an accurate analytical fit in the range 10^6 <= (M_BH/M_sun) <= 5*10^9. We find a total SMBH mass density of (4.2+/-1.1)*10^5 M_sun/Mpc^3, about 25% of which is contributed by SMBHs residing in bulges of late type galaxies. Exploiting up-to-date luminosity functions of hard X-ray and optically selected AGNs, we have studied the accretion history of the SMBH population. If most of the accretion happens at constant \dot{M_BH}/M_BH the local SMBH mass function is fully accounted for by mass accreted by X-ray selected AGNs, with bolometric corrections indicated by current observations and a standard mass-to-light conversion efficiency \epsilon ~10%. The analysis of the accretion history highlights that the most massive BHs accreted their mass faster and at higher redshifts (z>1.5), while the lower mass BHs responsible for most of the hard X-ray background have mostly grown at z<1.5. The accreted mass function matches the local SMBH mass function if \epsilon ~0.09(+0.04,-0.03) and the Eddington ratio \lambda=L/L_Edd \~0.3(+0.3,-0.1) (68% confidence errors). The visibility time, during which AGNs are luminous enough to be detected by the currently available X-ray surveys, ranges from ~0.1 Gyr for present day BH masses M_BH(z=0) ~10^6 M_sun to ~0.3 Gyr for M_BH(z=0) >= 10^9 M_sun. The mass accreted during luminous phases is >= 25-30% even if we assume extreme values of \epsilon (\epsilon \~0.3-0.4). An unlikely fine tuning of the parameters would be required to account for the local SMBH mass function accomodating a dominant contribution from 'dark' BH growth (due, e.g., to BH coalescence).Comment: 12 pages, 14 figures, accepted for publication in MNRAS, minor changes following referee's comment

    Comment on "Scalar-tensor gravity coupled to a global monopole and flat rotation curves" by Lee and Lee

    Full text link
    The recent paper by Lee and Lee (2004) may strongly leave the impression that astronomers have established that the rotation curves of spiral galaxies are flat. We show that the old paradigm of Flat Rotation Curves lacks, today, any observational support and following it at face value leads to intrinsically flawed alternatives to the Standard Dark Matter Scenario. On the other side, we claim that the rich systematics of spiral galaxy rotation curves, that reveals, in the standard Newtonian Gravity framework, the phenomenon of dark matter, in alternative scenarios, works as a unique benchmark.Comment: 3 pages, 2 figures, accepted in Phys. Rev.

    The Universal Rotation Curve of Spiral Galaxies. II The Dark Matter Distribution out to the Virial Radius

    Get PDF
    In the current LambdaCDM cosmological scenario, N-body simulations provide us with a Universal mass profile, and consequently a Universal equilibrium circular velocity of the virialized objects, as galaxies. In this paper we obtain, by combining kinematical data of their inner regions with global observational properties, the Universal Rotation Curve (URC) of disk galaxies and the corresponding mass distribution out to their virial radius. This curve extends the results of Paper I, concerning the inner luminous regions of Sb-Im spirals, out to the edge of the galaxy halos.Comment: In press on MNRAS. 10 pages, 8 figures. The Mathematica code for the figures is available at: http://www.novicosmo.org/salucci.asp Corrected typo

    Joint Formation of QSOs and Spheroids: QSOs as clocks of star formation in Spheroids

    Full text link
    Direct and indirect observational evidence leads to the conclusion that high redshift QSOs did shine in the core of early type proto-galaxies during their main episode of star formation. Exploting this fact, we derive the rate of formation of this kind of stellar systems at high redshift by using the QSO Luminosity Function. The elemental proportions in elliptical galaxies, the descendents of the QSO hosts, suggest that the star formation was more rapid in more massive objects. We show that this is expected to occur in Dark Matter haloes, when the processes of cooling and heating is considered. This is also confirmed by comparing the observed sub-mm counts to those derived by coupling the formation rate and the star formation rate of the spheroidal galaxies with a detailed model for their SED evolution. In this scenario SCUBA galaxies and Lyman Break Galaxies are early type proto-galaxies forming the bulk of their stars before the onset of QSO activity.Comment: 13 pages, 8 figures, accepted by MNRAS, major revision of the formalis

    A Physical Model for Co-evolution of QSOs and of their Spheroidal Hosts

    Full text link
    At variance with most semi-analytic models, in the Anti-hierarchical Baryon Collapse scenario (Granato et al. 2001, 2004) the main driver of the galaxy formation and evolution is not the merging sequence but are baryon processes. This approach emphasizes, still in the framework of the hierarchical clustering paradigm for dark matter halos, feedback processes from supernova explosions and from active nuclei, that tie together star formation in spheroidal galaxies and the growth of black holes at their centers. We review some recent results showing the remarkably successful predictive power of this scenario, which allows us to account for the evolution with cosmic time of a broad variety of properties of galaxies and active nuclei, which proved to be very challenging for competing models.Comment: Invited talk at the Specola Vaticana Workshop on "AGN and Galaxy Evolution", Castel Gandolfo, 3-6 October 2005, 10 pages, 2 figure

    From First Galaxies to QSOs: feeding the baby monsters

    Full text link
    We present a physical model for the coevolution of massive spheroidal galaxies and active nuclei at their centers. Supernova heating is increasingly effective in slowing down the star formation and in driving gas outflows in smaller and smaller dark matter halos. Thus the more massive protogalaxies virializing at early times are the sites of faster star formation. The correspondingly higher radiation drag causes a faster angular momentum loss by the gas and induces a larger accretion rate onto the central black hole. In turn, the kinetic energy of the outflows powered by the active nuclei can unbind the residual gas in a time shorter for larger halos. The model accounts for a broad variety of dynamical, photometric and metallicity properties of early-type galaxies, for the M_BH -- \sigma relation and for the local supermassive black-hole mass function.Comment: 6 pages, contributed paper to Proceedings of the Conference on "Growing Black Holes" held in Garching, Germany, on June 21-25, 2004, edited by A. Merloni, S. Nayakshin and R. Sunyaev, Springer-Verlag series of "ESO Astrophysics Symposia

    NGC 3741: the dark halo profile from the most extended rotation curve

    Get PDF
    We present new Hi observations of the nearby dwarf galaxy NGC 3741. This galaxy has an extremely extended Hi disc, which allows us to trace the rotation curve out to unprecedented distances in terms of the optical disc: we reach 42 B-band exponential scalelengths or about 7 kpc. The Hi disc is strongly warped, but the warp is very symmetric. The distribution and kinematics are accurately derived by building model data cubes, which closely reproduce the observations. In order to account for the observed features in the data cube, radial motions of the order of 5-13 km s-1 are needed. They are consistent with an inner bar of several hundreds of pc and accretion of material in the outer regions. The observed rotation curve was decomposed into its stellar, gaseous and dark components. The Burkert dark halo (with a central constant density core) provides very good fits. The dark halo density distribution predicted by the A cold dark matter (CDM) theory fails to fit the data, unless NGC 3741 is a 2.5\u3c3 exception to the predicted relation between concentration parameter and virial mass and at the same time a high value of the virial mass (though poorly constrained) of 1011 M f. Noticeably, modified Newtonian dynamics (MOND) seems to be consistent with the observed rotation curve. Scaling up the contribution of the gaseous disc also gives a good fit. \ua9 2006 RAS
    • …
    corecore