441 research outputs found

    NH3 in the Central 10 pc of the Galaxy I: General Morphology and Kinematic Connections Between the CND and GMCs

    Full text link
    New VLA images of NH3 (1,1), (2,2), and (3,3) emission in the central 10 parsecs of the Galaxy trace filamentary streams of gas, several of which appear to feed the circumnuclear disk (CND). The NH3 images have a spatial resolution of 16.5''x14.5'' and have better spatial sampling than previous NH3 observations. The images show the ``southern streamer,'' ``50 km/s cloud,'' and new features including a ``western streamer'', 6 parsecs in length, and a ``northern ridge'' which connects to the CND. NH3(3,3) emission is very similar to 1.2 mm dust emission indicating that NH3 traces column density well. Ratios of the NH3(2,2) to (1,1) line intensities give an estimate of the temperature of the gas and indicate high temperatures close to the nucleus and CND. The new data cover a velocity range of 270 km/s, including all velocities observed in the CND, with a resolution of 9.8 km/s. Previous NH3 observations with higher resolution did not cover the entire range of velocities seen in the CND. The large-scale kinematics of the CND do not resemble a coherent ring or disk. We see evidence for a high velocity cloud within a projected distance of 50'' (2 pc) which is only seen in NH3(3,3) and is likely to be hot. Comparison to 6 cm continuum emission reveals that much of the NH3 emission traces the outer edges of Sgr A East and was probably pushed outward by this expanding shell. The connection between the northern ridge (which appears to be swept up by Sgr A East) and the CND indicates that Sgr A East and the CND are in close proximity to each other. Kinematic evidence for these connections is presented in this paper, while the full kinematic analysis of the central 10 pc will be presented in Paper II.Comment: 16 pages (containing 6 figures), 8 additional JPEG figures. Accepted for publication in ApJ. For full resolution images, see http://cfa-www.harvard.edu/~rmcgary/SGRA/nh3_figures.htm

    NH3 in the Central 10 pc of the Galaxy. II. Determination of Opacity for Gas with Large Linewidths

    Full text link
    The 23 GHz emission lines from the NH3 rotation inversion transitions are widely used to investigate the kinematics and physical conditions in dense molecular clouds. The line profile is composed of hyperfine components which can be used to calculate the opacity of the gas (Ho & Townes 1983). If the intrinsic linewidth of the gas exceeds one half of the separation of these quadrupole hyperfine components (~5-10 km/s) these lines blend together and the observed linewidths greatly overestimate the intrinsic linewidths. If uncorrected, these artificially broad linewidths will lead to artificially high opacities. We have observed this effect in our NH3 data from the central 10 pc of the Galaxy where uncorrected NH3 (1,1) linewidths of ~30 km/s exaggerate the intrinsic linewidths by more than a factor of two (Genzel & Townes 1987). Models of the effect of blending on the line profile enable us to solve for the intrinsic linewidth and opacity of NH3 using the observed linewidth and intensity of two NH3 rotation inversion transitions. We present the result of the application of this method to our Galactic Center data. We successfully recover the intrinsic linewidth and opacity of the gas. Clouds close to the nucleus in projected distance as well as those that are being impacted by Sgr A East show the highest intrinsic linewidths. The cores of the ``southern streamer'' (Ho et al. 1991; Coil & Ho 1999, 2000) and the ``50 km/s'' giant molecular cloud have the highest opacities.Comment: 27 pages, 10 figures, accepted for publication in Ap

    The Nature of the Molecular Environment within 5 pc of the Galactic Center

    Full text link
    We present a detailed study of molecular gas in the central 10pc of the Galaxy through spectral line observations of four rotation inversion transitions of NH3 made with the VLA. Updated line widths and NH3(1,1) opacities are presented, and temperatures, column densities, and masses are derived. We examine the impact of Sgr A East on molecular material at the Galactic center and find that there is no evidence that the expansion of this shell has moved a significant amount of the 50 km/s GMC. The western streamer, however, shows strong indications that it is composed of material swept-up by the expansion of Sgr A East. Using the mass and kinematics of the western streamer, we calculate an energy of E=(2-9)x10^{51} ergs for the progenitor explosion and conclude that Sgr A East was most likely produced by a single supernova. The temperature structure of molecular gas in the central ~20pc is also analyzed in detail. We find that molecular gas has a ``two-temperature'' structure similar to that measured by Huttemeister et al. (2003a) on larger scales. The largest observed line ratios, however, cannot be understood in terms of a two-temperature model, and most likely result from absorption of NH3(3,3) emission by cool surface layers of clouds. By comparing the observed NH3 (6,6)-to-(3,3) line ratios, we disentangle three distinct molecular features within a projected distance of 2pc from Sgr A*. Gas associated with the highest line ratios shows kinematic signatures of both rotation and expansion. The southern streamer shows no significant velocity gradients and does not appear to be directly associated with either the circumnuclear disk or the nucleus. The paper concludes with a discussion of the line-of-sight arrangement of the main features in the central 10pc.Comment: 51 pages, 16 figures, accepted for publication in ApJ. Due to size limitations, some of the images have been cut from this version. A complete, color PS or PDF version can be downloaded from http://www.astro.columbia.edu/~herrnstein/NH3/paper

    Molecular Tracers of the Central 12 pc of the Galactic Center

    Full text link
    We have used the BIMA array to image the Galactic Center with a 19-pointing mosaic in HCN(1-0), HCO+(1-0), and H 42-alpha emission with 5 km/s velocity resolution and 13'' x 4'' angular resolution. The 5' field includes the circumnuclear ring (CND) and parts of the 20 and 50 km/s clouds. HCN(1-0) and HCO+ trace the CND and nearby giant molecular clouds while the H 42-alpha emission traces the ionized gas in Sgr A West. We find that the CND has a definite outer edge in HCN and HCO+ emission at ~45'' radius and appears to be composed of two or three distinct streams of molecular gas rotating around the nucleus. Outside the CND, HCN and HCO+ trace dense clumps of high-velocity gas in addition to optically thick emission from the 20 and 50 km/s clouds. A molecular ridge of compressed gas and dust, traced in NH3 emission and self-absorbed HCN and HCO+, wraps around the eastern edge of Sgr A East. Just inside this ridge are several arcs of gas which have been accelerated by the impact of Sgr A East with the 50 km/s cloud. HCN and HCO+ emission trace the extension of the northern arm of Sgr A West which appears to be an independent stream of neutral and ionized gas and dust originating outside the CND. Broad line widths and OH maser emission mark the intersection of the northern arm and the CND. Comparison to previous NH3 and 1.2mm dust observations shows that HCN and HCO+ preferentially trace the CND and are weaker tracers of the GMCs than NH3 and dust. We discuss possible scenarios for the emission mechanisms and environment at the Galactic center which could explain the differences in these images.Comment: 24 pages, including 17 figures; to appear in The Astrophysical Journa

    Polyurethane Elastomers as Maxillofacial Prosthetic Materials

    Full text link
    A series of polyurethane elastomers based on an aliphatic diisocyanate and a polyether macroglycol was polymerized with various crosslink densities and OH/NCO ratios. Stoichiometries yielding between 8,600 and 12,900 gm/ mole/crosslink and an OH/NCO ratio of 1.1 resulted in polymers with the low modulus, yet high strength and elongation necessary for maxillofacial applications.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68299/2/10.1177_00220345780570040501.pd

    STING agonist promotes CAR T cell trafficking and persistence in breast cancer

    Get PDF
    CAR T therapy targeting solid tumors is restrained by limited infiltration and persistence of those cells in the tumor microenvironment (TME). Here, we developed approaches to enhance the activity of CAR T cells using an orthotopic model of locally advanced breast cancer. CAR T cells generated from Th/Tc17 cells given with the STING agonists DMXAA or cGAMP greatly enhanced tumor control, which was associated with enhanced CAR T cell persistence in the TME. Using single-cell RNA sequencing, we demonstrate that DMXAA promoted CAR T cell trafficking and persistence, supported by the generation of a chemokine milieu that promoted CAR T cell recruitment and modulation of the immunosuppressive TME through alterations in the balance of immune-stimulatory and suppressive myeloid cells. However, sustained tumor regression was accomplished only with the addition of anti-PD-1 and anti-GR-1 mAb to Th/Tc17 CAR T cell therapy given with STING agonists. This study provides new approaches to enhance adoptive T cell therapy in solid tumors

    Historic drought puts the breaks on earthflows in Northern California

    Get PDF
    California's ongoing, unprecedented drought is having profound impacts on the state's resources. Here we assess its impact on 98 deep-seated, slow-moving landslides in Northern California. We used aerial photograph analysis, satellite interferometry, and satellite pixel tracking to measure earthflow velocities spanning 1944–2015 and compared these trends with the Palmer Drought Severity Index, a proxy for soil moisture and pore pressure that governs landslide motion. We find that earthflow velocities reached a historical low in the 2012–2015 drought, but that their deceleration began at the turn of the century in response to a longer-term moisture deficit. Our analysis implies depth-dependent sensitivity of earthflows to climate forcing, with thicker earthflows reflecting longer-term climate trends and thinner earthflows exhibiting less systematic velocity variations. These findings have implications for mechanical-hydrologic interactions that link landslide movement with climate change as well as sediment delivery in the region
    • …
    corecore