158 research outputs found

    Isospin non-equilibrium in heavy-ion collisions at intermediate energies

    Full text link
    We study the equilibration of isospin degree of freedom in intermediate energy heavy-ion collisions using an isospin-dependent BUU model. It is found that there exists a transition from the isospin equilibration at low energies to non-equilibration at high energies as the beam energy varies across the Fermi energy in central, asymmetric heavy-ion collisions. At beam energies around 55 MeV/nucleon, the composite system in thermal equilibrium but isospin non-equilibrium breaks up into two primary hot residues with N/Z ratios closely related to those of the target and projectile respectively. The decay of these forward-backward moving residues results in the strong isospin asymmetry in space and the dependence of the isotopic composition of fragments on the N/Z ratios of the target and projectile. These features are in good agreement with those found recently in experiments at NSCL/MSU and TAMU, implications of these findings are discussed.Comment: 9 pages, latex, + 3 figures available upon reques

    ÉTUDE EXPÉRIMENTALE ET THÉORIQUE DES NOYAUX DE TRANSITION 68,70,72,74Ge

    Get PDF
    Les isotopes de 68,70,72,74Ge ont été étudiés avec une haute résolution en énergie au moyen de la réaction (p, t). Un grand nombre de nouveaux niveaux 0+, 2+ et 4+ à basse énergie ont été mis en évidence. Des calculs semi-microscopiques de surfaces d'énergie potentielle et de spectres ont été effectués et des conclusions sont données sur la structure des noyaux Ge

    Isospin Physics in Heavy-Ion Collisions at Intermediate Energies

    Get PDF
    In nuclear collisions induced by stable or radioactive neutron-rich nuclei a transient state of nuclear matter with an appreciable isospin asymmetry as well as thermal and compressional excitation can be created. This offers the possibility to study the properties of nuclear matter in the region between symmetric nuclear matter and pure neutron matter. In this review, we discuss recent theoretical studies of the equation of state of isospin-asymmetric nuclear matter and its relations to the properties of neutron stars and radioactive nuclei. Chemical and mechanical instabilities as well as the liquid-gas phase transition in asymmetric nuclear matter are investigated. The in-medium nucleon-nucleon cross sections at different isospin states are reviewed as they affect significantly the dynamics of heavy ion collisions induced by radioactive beams. We then discuss an isospin-dependent transport model, which includes different mean-field potentials and cross sections for the proton and neutron, and its application to these reactions. Furthermore, we review the comparisons between theoretical predictions and available experimental data. In particular, we discuss the study of nuclear stopping in terms of isospin equilibration, the dependence of nuclear collective flow and balance energy on the isospin-dependent nuclear equation of state and cross sections, the isospin dependence of total nuclear reaction cross sections, and the role of isospin in preequilibrium nucleon emissions and subthreshold pion production.Comment: 101 pages with embedded epsf figures, review article for "International Journal of Modern Physics E: Nuclear Physics". Send request for a hard copy to 1/author

    UV spectrophotometry method for the monitoring of galacto-oligosaccharides production

    Get PDF
    Monitoring the industrial production of galacto-oligosaccharides (GOS) requires a fast and accurate methodology able to quantify, in real time, the substrate level and the product yield. In this work, a simple, fast and inexpensive UV spectrophotometric method, together with partial least squares regression (PLS) and artificial neural networks (ANN), was applied to simultaneously estimate the products (GOS) and the substrate (lactose) concentrations in fermentation samples. The selected multiple models were trained and their prediction abilities evaluated by cross-validation and external validation being the results obtained compared with HPLC measurements. ANN models, generated from absorbance spectra data of the fermentation samples, gave, in general, the best performance being able to accurately and precisely predict lactose and total GOS levels, with standard error of prediction lower than 13 g kg 1 and coefficient of determination for the external validation set of 0.93–0.94, showing residual predictive deviations higher than five, whereas lower precision was obtained with the multiple model generated with PLS. The results obtained show that UV spectrophotometry allowed an accurate and non-destructive determination of sugars in fermentation samples and could be used as a fast alternative method for monitoring GOS production.Fundação para a Ciência e a Tecnologia (FCT) - Bolsa de doutouramento SFRH/BDE/15510/2004Agência da Inovação – Programa IDEIA (Potugal

    Removing critical gaps in chemical test methods by developing new assays for the identification of thyroid hormone system-disrupting chemicals—the athena project

    Get PDF
    The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood–brain and blood–placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation

    S-Phase Favours Notch Cell Responsiveness in the Drosophila Bristle Lineage

    Get PDF
    We have studied cell sensitivity to Notch pathway signalling throughout the cell cycle. As model system, we used the Drosophila bristle lineage where at each division N plays a crucial role in fate determination. Using in vivo imaging, we followed this lineage and activated the N-pathway at different moments of the secondary precursor cell cycle. We show that cells are more susceptible to respond to N-signalling during the S-phase. Thus, the period of heightened sensitivity coincided with the period of the S-phase. More importantly, modifications of S-phase temporality induced corresponding changes in the period of the cell's reactivity to N-activation. Moreover, S-phase abolition was correlated with a decrease in the expression of tramtrack, a downstream N-target gene. Finally, N cell responsiveness was modified after changes in chromatin packaging. We suggest that high-order chromatin structures associated with the S-phase create favourable conditions that increase the efficiency of the transcriptional machinery with respect to N-target genes

    Phase II study of preoperative radiation plus concurrent daily tegafur-uracil (UFT) with leucovorin for locally advanced rectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considerable variation in intravenous 5-fluorouracil (5-FU) metabolism can occur due to the wide range of dihydropyrimidine dehydrogenase (DPD) enzyme activity, which can affect both tolerability and efficacy. The oral fluoropyrimidine tegafur-uracil (UFT) is an effective, well-tolerated and convenient alternative to intravenous 5-FU. We undertook this study in patients with locally advanced rectal cancer to evaluate the efficacy and tolerability of UFT with leucovorin (LV) and preoperative radiotherapy and to evaluate the utility and limitations of multicenter staging using pre- and post-chemoradiotherapy ultrasound. We also performed a validated pretherapy assessment of DPD activity and assessed its potential influence on the tolerability of UFT treatment.</p> <p>Methods</p> <p>This phase II study assessed preoperative UFT with LV and radiotherapy in 85 patients with locally advanced T3 rectal cancer. Patients with potentially resectable tumors received UFT (300 mg/m/<sup>2</sup>/day), LV (75 mg/day), and pelvic radiotherapy (1.8 Gy/day, 45 Gy total) 5 days/week for 5 weeks then surgery 4-6 weeks later. The primary endpoints included tumor downstaging and the pathologic complete response (pCR) rate.</p> <p>Results</p> <p>Most adverse events were mild to moderate in nature. Preoperative grade 3/4 adverse events included diarrhea (n = 18, 21%) and nausea/vomiting (n = 5, 6%). Two patients heterozygous for dihydropyrimidine dehydrogenase gene (<it>DPYD</it>) experienced early grade 4 neutropenia (variant IVS14+1G > A) and diarrhea (variant 2846A > T). Pretreatment ultrasound TNM staging was compared with postchemoradiotherapy pathology TN staging and a significant shift towards earlier TNM stages was observed (p < 0.001). The overall downstaging rate was 42% for primary tumors and 44% for lymph nodes. The pCR rate was 8%. The sensitivity and specificity of ultrasound for staging was poor. Anal sphincter function was preserved in 55 patients (65%). Overall and recurrence-free survival at 3 years was 86.1% and 66.7%, respectively. Adjuvant chemotherapy was administered to 36 node-positive patients (mean duration 118 days).</p> <p>Conclusion</p> <p>Preoperative chemoradiotherapy using UFT with LV plus radiotherapy was well tolerated and effective and represents a convenient alternative to 5-FU-based chemoradiotherapy for the treatment of resectable rectal cancer. Pretreatment detection of DPD deficiency should be performed to avoid severe adverse events.</p

    Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    Get PDF
    Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (∼10−9 to 10−7 m/s, corresponding to permeability of ∼10−16 to 10−14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation

    Removing Critical Gaps in Chemical Test Methods by Developing New Assays for the Identification of Thyroid Hormone System-Disrupting Chemicals—The ATHENA Project

    Get PDF
    Copyright © 2020 by the authors. The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood–brain and blood–placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation.EU Horizon 2020 programme, grant number 82516
    • …
    corecore