2,196 research outputs found

    Noether symmetries and the quantization of a Lienard-type nonlinear oscillator

    Full text link
    The classical quantization of a Lienard-type nonlinear oscillator is achieved by a quantization scheme (M.C. Nucci. Theor. Math. Phys., 168:997--1004, 2011) that preserves the Noether point symmetries of the underlying Lagrangian in order to construct the Schr\"odinger equation. This method straightforwardly yields the correct Schr\"odinger equation in the momentum space (V. Chithiika Ruby, M. Senthilvelan, and M. Lakshmanan. J. Phys. A: Math. Gen., 45:382002, 2012), and sheds light into the apparently remarkable connection with the linear harmonic oscillator.Comment: 18 page

    Quantization of quadratic Li\'enard-type equations by preserving Noether symmetries

    Full text link
    The classical quantization of a family of a quadratic Li\'{e}nard-type equation (Li\'{e}nard II equation) is achieved by a quantization scheme (M.~C. Nucci. {\em Theor. Math. Phys.}, 168:994--1001, 2011) that preserves the Noether point symmetries of the underlying Lagrangian in order to construct the Schr\"odinger equation. This method straightforwardly yields the Schr\"odinger equation as given in (A.~Ghose~Choudhury and Partha Guha. {\em J. Phys. A: Math. Theor.}, 46:165202, 2013).Comment: 13 pages. arXiv admin note: text overlap with arXiv:1307.3803 in the Introduction since the authors' method of quantization is described agai

    Gauge Variant Symmetries for the Schr\"odinger Equation

    Full text link
    The last multiplier of Jacobi provides a route for the determination of families of Lagrangians for a given system. We show that the members of a family are equivalent in that they differ by a total time derivative. We derive the Schr\"odinger equation for a one-degree-of-freedom system with a constant multiplier. In the sequel we consider the particular example of the simple harmonic oscillator. In the case of the general equation for the simple harmonic oscillator which contains an arbitrary function we show that all Schr\"odinger equations possess the same number of Lie point symmetries with the same algebra. From the symmetries we construct the solutions of the Schr\"odinger equation and find that they differ only by a phase determined by the gauge.Comment: 12 page

    From Lagrangian to Quantum Mechanics with Symmetries

    Full text link
    We present an old and regretfully forgotten method by Jacobi which allows one to find many Lagrangians of simple classical models and also of nonconservative systems. We underline that the knowledge of Lie symmetries generates Jacobi last multipliers and each of the latter yields a Lagrangian. Then it is shown that Noether's theorem can identify among those Lagrangians the physical Lagrangian(s) that will successfully lead to quantization. The preservation of the Noether symmetries as Lie symmetries of the corresponding Schr\"odinger equation is the key that takes classical mechanics into quantum mechanics. Some examples are presented.Comment: To appear in: Proceedings of Symmetries in Science XV, Journal of Physics: Conference Series, (2012

    Ermakov's Superintegrable Toy and Nonlocal Symmetries

    Full text link
    We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2,R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Lie point symmetries and first integrals: the Kowalevsky top

    Full text link
    We show how the Lie group analysis method can be used in order to obtain first integrals of any system of ordinary differential equations. The method of reduction/increase of order developed by Nucci (J. Math. Phys. 37, 1772-1775 (1996)) is essential. Noether's theorem is neither necessary nor considered. The most striking example we present is the relationship between Lie group analysis and the famous first integral of the Kowalevski top.Comment: 23 page

    Analytic Behaviour of Competition among Three Species

    Full text link
    We analyse the classical model of competition between three species studied by May and Leonard ({\it SIAM J Appl Math} \textbf{29} (1975) 243-256) with the approaches of singularity analysis and symmetry analysis to identify values of the parameters for which the system is integrable. We observe some striking relations between critical values arising from the approach of dynamical systems and the singularity and symmetry analyses.Comment: 14 pages, to appear in Journal of Nonlinear Mathematical Physic

    Superintegrable systems in non-Euclidean plane: hidden symmetries leading to linearity

    Get PDF
    Nineteen classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries leading to their linearization. They are the two Perlick systems [A. Ballesteros, A. Enciso, F.J. Herranz and O. Ragnisco, Class. Quantum Grav. 25, 165005 (2008)], the Taub-NUT system [A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, and D. Riglioni, SIGMA 7, 048 (2011)], and all the seventeen superintegrable systems for the four types of Darboux spaces as determined in [E.G. Kalnins, J.M. Kress, W. Miller, P. Winternitz, J. Math. Phys. 44, 5811--5848 (2003)]
    • …
    corecore