1,141 research outputs found
Deglacial records of terrigenous organic matter accumulation off the Yukon and Amur rivers based on lignin phenols and long-chain <i>n</i>-alkanes
Arctic warming and sea level change will lead to widespread permafrost thaw
and subsequent mobilization. Sedimentary records of past warming events
during the Last Glacialāinterglacial transition can be used to study the
conditions under which permafrost mobilization occurs and which changes in
vegetation on land are associated with such warming. The Amur and Yukon
rivers discharging into the Okhotsk and Bering seas, respectively, drain
catchments that have been, or remain until today, covered by permafrost.
Here we study two marine sediment cores recovered off the mouths of these
rivers. We use lignin phenols as biomarkers, which are excellently suited
for the reconstruction of terrestrial higher plant vegetation, and compare
them with previously published lipid biomarker data.
We find that in the Yukon basin, vegetation change and wetland expansion
began already in the early deglaciationĀ (ED; 14.6ā19āka). This timing is different from observed changes in the Okhotsk Sea reflecting input from the Amur basin, where wetland expansion and vegetation change occurred later in the Pre-BorealĀ (PB). In the two basins, angiosperm contribution and wetland extent all reached maxima during theĀ PB, both decreasing and stabilizing after theĀ PB. The permafrost of the Amur basin began to become remobilized in theĀ PB. Retreat of sea ice coupled with increased sea surface temperatures in the Bering Sea during the EDĀ might have promoted early permafrost mobilization. In modern Arctic river systems, lignin and n-alkanes are transported from land to the ocean via different pathways, i.e., surface runoff vs.Ā erosion of deeper deposits, respectively. However, accumulation rates of lignin phenols and lipids are similar in our records, suggesting that under conditions of rapid sea level rise and shelf flooding, both types of terrestrial biomarkers are delivered by the same transport pathway. This finding suggests that the fate of terrigenous organic matter in the Arctic differs on both temporal and spatial scales.</p
Serum heart-type fatty acid-binding protein and cerebrospinal fluid tau: Marker candidates for dementia with Lewy bodies
Background: The measurement of biomarkers in cerebrospinal fluid (CSF) has gained increasing acceptance in establishing the diagnosis of some neurodegenerative diseases. Heart-type fatty acid-binding protein (H-FABP) was recently discovered in CSF and serum of patients with neurodegenerative diseases. Objective: We investigated H-FABP in CSF and serum alone and in combination with CSF tau protein to evaluate these as potential biomarkers for the differentiation between dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). Methods: We established H-FABP and tau protein values in a set of 144 persons with DLB (n = 33), Parkinson disease with dementia (PDD; n = 25), AD (n = 35) and nonclemented neurological controls (NNC; n = 51). Additionally, serum H-FABP levels were analyzed in idiopathic Parkinson disease patients without evidence of cognitive decline (n = 45) using commercially available enzyme-linked immunosorbent assays. We calculated absolute values of HFABP and tau protein in CSF and serum and established relative ratios between the two to obtain the best possible match for the clinical working diagnosis. Results: Serum HFABP levels were elevated in DLB and PDD patients compared with NNC and AD subjects. To better discriminate between DLB and AD, we calculated the ratio of serum H-FABP to CSF tau protein levels. At the arbitrary chosen cutoff ratio >= 8 this quotient reached a sensitivity of 91% and a specificity of 66%. Conclusion: Our results suggest that the measurement of CSF tau protein, together with H-FABP quantification in serum and CSF, and the ratio of serum H-FABP to CSF tau protein represent marker candidates for the differentiation between AD and DLB. Copyright (c) 2007 S. Karger AG, Basel
Evolution of winter precipitation in the Nile river watershed since the last glacial
Between 14.5 and 5āka, the Sahara was vegetated owing to a wet climate during the African humid period. However, the climatic factors sustaining the āgreen Saharaā are still a matter of debate. Particularly the role of winter precipitation is poorly understood. Using the stable hydrogen isotopic composition (Ī“D, where D stands for deuterium) of high molecular weight (HMW) n-alkanoic acids in a marine sediment core from the eastern Mediterranean, we provide a continuous record for winter precipitation in the Nile river delta spanning the past 18ākyr. Pairing the data with Ī“D records from HMW n-alkanes from the same core, we show that HMW n-alkanoic acids constantly derived from the delta, while the HMW n-alkanes also received significant contributions from the headwaters between ā¼ā15ā1āka when fluvial runoff enhanced. This enables us to reconstruct the evolution of Mediterranean (winter) and monsoonal (summer) rainfall in the Nile river watershed in parallel. In the delta, the Heinrich stadial 1 (HS1) evolved in two phases, with a dry episode between ā¼ā17.5ā16.0āka, followed by wet conditions between ā¼ā16ā14.5āka. Winter rainfall enhanced substantially between 11ā6āka, lagging behind the intensification of the summer monsoon by ca.Ā 3ākyr. Heavy winter rainfall resulted from a southern position of the Atlantic storm track combined with elevated sea surface temperatures in the eastern Mediterranean, reinforcing local cyclogenesis. We show that during the green Sahara, monsoon precipitation and Mediterranean winter rainfall were both enhanced and infer that the winter rainfall zone extended southwards, delivering moisture to the Sahara. Our findings corroborate recent hypotheses suggesting that winter rains that extended southward were a crucial addition to the northward displacement of the summer monsoon in helping to sustain a green Sahara.</p
DMBT1 expression is down-regulated in breast cancer.
BACKGROUND: We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. METHODS: Sections from 17 benign lesions and 55 carcinomas were immunostained with anti DMBT1 antibody (DMBTh12) and sections from 36 samples, were double-stained also with anti MCM5, one of the 6 pre-replicative complex proteins with cell proliferation-licensing functions. DMBT1 gene expression at mRNA level was assessed by RT-PCR in frozen tissues samples from 39 patients. RESULTS: Normal glands and hyperplastic epithelium in benign lesions displayed a luminal polarized DMBTh12 immunoreactivity. Normal and hyperplastic epithelium adjacent to carcinomas showed a loss of polarization, with immunostaining present in basal and perinuclear cytoplasmic compartments. DMBT1 protein expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. CONCLUSIONS: The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant expression of DMTB1 and MCM5 suggests its possible association with the cell-cycle regulation
Proteomic analysis of the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease
So far, only the detection of 14-3-3 proteins in cerebrospinal fluid (CSF) has been accepted as diagnostic criterion for Creutzfeldt-Jakob disease (CJD). However, this assay cannot be used for screening because of the high rate of false-positive results, whereas patients with variant CJD are often negative for 14-3-3 proteins. The aim of this study was to compare the spot patterns of CSF by 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE) to search for a CJD-specific spot pattern. We analyzed the CSF of 28 patients {[}11 CJD, 9 Alzheimer's disease ( AD), 8 nondemented controls (NDC)] employing 2D-PAGE which was optimized for minimal volumes of CSF (0.1 ml; 7-cm strips). All samples were run at least three times, gels were silver stained and analyzed by an analysis software and manually revised. We could consistently match 268 spots which were then compared between all groups. By the use of 5 spots, we were able to differentiate CJD from AD or NDC with a sensitivity of 100%. CJD could also be distinguished from both groups by using a heuristic clustering algorithm of 2 spots. We conclude that this proteomic approach can differentiate CJD from other diseases and may serve as a model for other neurodegenerative diseases. Copyright (C) 2007 S. Karger AG, Basel
Bathypelagic particle flux signatures from a suboxic eddy in the oligotrophic tropical North Atlantic: production, sedimentation and preservation
Particle fluxes at the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time-series data collected at 1290 and 3439āÆm water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen (minimum concentration below 2āÆĀµmolāÆkgā1 at 40āÆm depth) anticyclonic modewater eddy (ACME) in winter 2010. The eddy passage was accompanied by unusually high mass fluxes of up to 151āÆmgāÆmā2āÆdā1, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi) and organic carbon flux peaks of ā¼āÆ15 and 13.3āÆmgāÆmā2āÆdā1, respectively, were observed in FebruaryāMarch 2010 when the eddy approached the CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated with that of organic carbon, in particular in the deep trap samples, suggesting a tight coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/meso-pelagic signatures to the bathypelagic traps. We suspect that the two- to three-fold increase in particle fluxes with depth as well as the tight coupling of mineral dust and organic carbon in the deep trap samples might be explained by particle focusing processes within the deeper part of the eddy. Molar CāÆ:āÆN ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some productivity under nutrient (nitrate) limitation occurred in the euphotic zone of the eddy in the beginning of 2010 or that a local nitrogen recycling took place. The Ī“15N record showed a decrease from 5.21 to 3.11āÆā° from January to March 2010, while the organic carbon and nitrogen fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive, but nutrient depletion and/or an increased availability of dust as a ballast mineral for organic-rich aggregates might have contributed. Rapid remineralisation of sinking organic-rich particles could have contributed to oxygen depletion at shallow depth. Although the eddy formed in the West African coastal area in summer 2009, no indications of coastal flux signatures (e.g. from diatoms) were found in the sediment trap samples, confirming the assumption that the suboxia developed within the eddy en route. However, we could not detect biomarkers indicative of the presence of anammox (anaerobic ammonia oxidation) bacteria or green sulfur bacteria thriving in photic zone suboxia/hypoxia, i.e. ladderane fatty acids and isorenieratene derivatives, respectively. This could indicate that suboxic conditions in the eddy had recently developed and/or the respective bacterial stocks had not yet reached detection thresholds. Another explanation is that the fast-sinking organic-rich particles produced in the surface layer did not interact with bacteria from the suboxic zone below. Carbonate fluxes dropped from ā¼ā52 to 21.4āÆmgāÆmā2āÆdā1 from January to February 2010, respectively, mainly due to reduced contribution of shallow-dwelling planktonic foraminifera and pteropods. The deep-dwelling foraminifera Globorotalia menardii, however, showed a major flux peak in February 2010, most probably due to the suboxia/hypoxia. The low oxygen conditions forced at least some zooplankton to reduce diel vertical migration. Reduced āflux feedingā by zooplankton in the epipelagic could have contributed to the enhanced fluxes of organic materials to the bathypelagic traps during the eddy passage. Further studies are required on eddy-induced particle production and preservation processes and particle focusin
Rapid Atlantification along the Fram Strait at the beginning of the 20th century
The recent expansion of Atlantic waters into the Arctic Ocean represents undisputable evidence of the rapid changes occurring in this region. Understanding the past variability of this "Atlantification" is thus crucial in providing a longer perspective on the modern Arctic changes. Here, we reconstruct the history of Atlantification along the eastern Fram Strait during the past 800 years using precisely dated paleoceanographic records based on organic biomarkers and benthic foraminiferal data. Our results show rapid changes in water mass properties that commenced in the early 20th century-several decades before the documented Atlantification by instrumental records. Comparison with regional records suggests a poleward expansion of subtropical waters since the end of the Little Ice Age in response to a rapid hydrographic reorganization in the North Atlantic. Understanding of this mechanism will require further investigations using climate model simulations
From representation to emergence: complexity's challenge to the epistemology of schooling
In modern,Western societies the purpose of schooling is to ensure that school-goers acquire knowledge of pre-existing practices, events, entities and so on.The knowledge that is learned is then tested to see if the learner has acquired a correct or adequate understanding of it. For this reason, it can be argued that schooling is organised around a representational epistemology: one which holds that knowledge is an accurate representation of something that is separate from knowledge itself. Since the object of knowledge is assumed to exist separately from the knowledge itself, this epistemology can also be considered āspatial.ā In this paper we show how ideas from complexity have challenged the āspatial epistemologyā of representation and we explore possibilities for an alternative ātemporalā understanding of knowledge in its relationship to reality. In addition to complexity, our alternative takes its inspiration from Deweyan ātransactional realismā and deconstruction. We suggest that āknowledgeā and ārealityā should not be understood as separate systems which somehow have to be brought into alignment with each other, but that they are part of the same emerging complex system which is never fully āpresentā in any (discrete) moment in time. This not only introduces the notion of time into our understanding of the relationship between knowledge and reality, but also points to the importance of acknowledging the role of the āunrepresentableā or āincalculableā. With this understanding knowledge reaches us not as something we receive but as a response, which brings forth new worlds because it necessarily adds something (which was not present anywhere before it appeared) to what came before. This understanding of knowledge suggests that the acquisition of curricular content should not be considered an end in itself. Rather, curricular content should be used to bring forth that which is incalculable from the perspective of the present. The epistemology of emergence therefore calls for a switch in focus for curricular thinking, away from questions about presentation and representation and towards questions about engagement and response
Ī±-Synuclein in human cerebrospinal fluid is principally derived from neurons of the central nervous system
The source of Parkinson disease-linked Ī±-synuclein (aSyn) in human cerebrospinal fluid (CSF) remains unknown. We decided to measure the concentration of aSyn and its gradient in human CSF specimens and compared it with serum to explore its origin. We correlated aSyn concentrations in CSF versus serum (QaSyn) to the albumin quotient (Qalbumin) to evaluate its relation to bloodāCSF barrier function. We also compared aSyn with several other CSF constituents of either central or peripheral sources (or both) including albumin, neuron-specific enolase, Ī²-trace protein and total protein content. Finally, we examined whether aSyn is present within the structures of the choroid plexus (CP). We observed that QaSyn did not rise or fall with Qalbumin values, a relative measure of bloodāCSF barrier integrity. In our CSF gradient analyses, aSyn levels decreased slightly from rostral to caudal fractions, in parallel to the recorded changes for neuron-specific enolase; the opposite trend was recorded for total protein, albumin and Ī²-trace protein. The latter showed higher concentrations in caudal CSF fractions due to the diffusion-mediated transfer of proteins from blood and leptomeninges into CSF in the lower regions of the spine. In postmortem sections of human brain, we detected highly variable aSyn reactivity within the epithelial cell layer of CP in patients diagnosed with a range of neurological diseases; however, in sections of mice that express only human SNCA alleles (and in those without any Snca gene expression), we detected no aSyn signal in the epithelial cells of the CP. We conclude from these complementary results that despite its higher levels in peripheral blood products, neurons of the brain and spinal cord represent the principal source of aSyn in human CSF
- ā¦