527 research outputs found

    Spider webs, stable isotopes and molecular gut content analysis: Multiple lines of evidence support trophic niche differentiation in a community of Hawaiian spiders

    Get PDF
    1.Adaptive radiations are typically characterized by niche partitioning among their constituent species. Trophic niche partitioning is particularly important in predatory animals, which rely on limited food resources for survival.2.We test for trophic niche partitioning in an adaptive radiation of Hawaiian Tetragnatha spiders, which have diversified in situ on the Hawaiian Islands. We focus on a community of nine species belonging to two different clades, one web-building and the other actively hunting, which co-occur in wet forest on East Maui. We hypothesize that trophic niches differ significantly both: (a) among species within a clade, indicating food resource partitioning, and (b) between the two clades, corresponding to their differences in foraging strategy.3.To assess niches of the spider species, we measure: (a) web architecture, the structure of the hunting tool, and (b) site choice, the physical placement of the web in the habitat. We then test whether differences in these parameters translate into meaningful differences in trophic niche by measuring (c) stable isotope signatures of carbon and nitrogen in the spiders\u27 tissues, and (d) gut content of spiders based on metabarcoding data.4.We find significant interspecific differences in web architecture and site choice. Importantly, these differences are reflected in stable isotope signatures among the five web-building species, as well as significant isotopic differences between web-builders and active hunters. Gut content data also show interspecific and inter-clade differences. Pairwise overlaps of web architecture between species are positively correlated with overlaps of isotopic signature.5.Our results reveal trophic niche partitioning among species within each clade, as well as between the web-building and actively hunting clades. Based on the correlation between web architecture and stable isotopes, it appears that the isotopic signatures of spiders\u27 tissues are influenced by architectural differences among their webs. Our findings indicate an important link between web structure, microhabitat preference and diet in the Hawaiian Tetragnatha

    Favorable Climate Change Response Explains Non-Native Species' Success in Thoreau's Woods

    Get PDF
    Invasive species have tremendous detrimental ecological and economic impacts. Climate change may exacerbate species invasions across communities if non-native species are better able to respond to climate changes than native species. Recent evidence indicates that species that respond to climate change by adjusting their phenology (i.e., the timing of seasonal activities, such as flowering) have historically increased in abundance. The extent to which non-native species success is similarly linked to a favorable climate change response, however, remains untested. We analyzed a dataset initiated by the conservationist Henry David Thoreau that documents the long-term phenological response of native and non-native plant species over the last 150 years from Concord, Massachusetts (USA). Our results demonstrate that non-native species, and invasive species in particular, have been far better able to respond to recent climate change by adjusting their flowering time. This demonstrates that climate change has likely played, and may continue to play, an important role in facilitating non-native species naturalization and invasion at the community level

    Genetic Tests for Ecological and Allopatric Speciation in Anoles on an Island Archipelago

    Get PDF
    From Darwin's study of the Galapagos and Wallace's study of Indonesia, islands have played an important role in evolutionary investigations, and radiations within archipelagos are readily interpreted as supporting the conventional view of allopatric speciation. Even during the ongoing paradigm shift towards other modes of speciation, island radiations, such as the Lesser Antillean anoles, are thought to exemplify this process. Geological and molecular phylogenetic evidence show that, in this archipelago, Martinique anoles provide several examples of secondary contact of island species. Four precursor island species, with up to 8 mybp divergence, met when their islands coalesced to form the current island of Martinique. Moreover, adjacent anole populations also show marked adaptation to distinct habitat zonation, allowing both allopatric and ecological speciation to be tested in this system. We take advantage of this opportunity of replicated island coalescence and independent ecological adaptation to carry out an extensive population genetic study of hypervariable neutral nuclear markers to show that even after these very substantial periods of spatial isolation these putative allospecies show less reproductive isolation than conspecific populations in adjacent habitats in all three cases of subsequent island coalescence. The degree of genetic interchange shows that while there is always a significant genetic signature of past allopatry, and this may be quite strong if the selection regime allows, there is no case of complete allopatric speciation, in spite of the strong primae facie case for it. Importantly there is greater genetic isolation across the xeric/rainforest ecotone than is associated with any secondary contact. This rejects the development of reproductive isolation in allopatric divergence, but supports the potential for ecological speciation, even though full speciation has not been achieved in this case. It also explains the paucity of anole species in the Lesser Antilles compared to the Greater Antilles

    A biogeographic reversal in sexual size dimorphism along a continental temperature gradient

    Get PDF
    © 2018 The Authors The magnitude and direction of sexual size dimorphism (SSD) varies greatly across the animal kingdom, reflecting differential selection pressures on the reproductive and/or ecological roles of males and females. If the selection pressures and constraints imposed on body size change along environmental gradients, then SSD will vary geographically in a predictable way. Here, we uncover a biogeographical reversal in SSD of lizards from Central and North America: in warm, low latitude environments, males are larger than females, but at colder, high latitudes, females are larger than males. Comparisons to expectations under a Brownian motion model of SSD evolution indicate that this pattern reflects differences in the evolutionary rates and/or trajectories of sex-specific body sizes. The SSD gradient we found is strongly related to mean annual temperature, but is independent of species richness and body size differences among species within grid cells, suggesting that the biogeography of SSD reflects gradients in sexual and/or fecundity selection, rather than intersexual niche divergence to minimize intraspecific competition. We demonstrate that the SSD gradient is driven by stronger variation in male size than in female size and is independent of clutch mass. This suggests that gradients in sexual selection and male–male competition, rather than fecundity selection to maximize reproductive output by females in seasonal environments, are predominantly responsible for the gradient

    Leveraging natural history biorepositories as a global, decentralized, pathogen surveillance network

    Get PDF
    The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic reveals a major gap in global biosecurity infrastructure: a lack of publicly available biological samples representative across space, time, and taxonomic diversity. The shortfall, in this case for vertebrates, prevents accurate and rapid identification and monitoring of emerging pathogens and their reservoir host(s) and precludes extended investigation of ecological, evolutionary, and environmental associations that lead to human infection or spillover. Natural history museum biorepositories form the backbone of a critically needed, decentralized, global network for zoonotic pathogen surveillance, yet this infrastructure remains marginally developed, underutilized, underfunded, and disconnected from public health initiatives. Proactive detection and mitigation for emerging infectious diseases (EIDs) requires expanded biodiversity infrastructure and training (particularly in biodiverse and lower income countries) and new communication pipelines that connect biorepositories and biomedical communities. To this end, we highlight a novel adaptation of Project ECHO’s virtual community of practice model: Museums and Emerging Pathogens in the Americas (MEPA). MEPA is a virtual network aimed at fostering communication, coordination, and collaborative problem-solving among pathogen researchers, public health officials, and biorepositories in the Americas. MEPA now acts as a model of effective international, interdisciplinary collaboration that can and should be replicated in other biodiversity hotspots. We encourage deposition of wildlife specimens and associated data with public biorepositories, regardless of original collection purpose, and urge biorepositories to embrace new specimen sources, types, and uses to maximize strategic growth and utility for EID research. Taxonomically, geographically, and temporally deep biorepository archives serve as the foundation of a proactive and increasingly predictive approach to zoonotic spillover, risk assessment, and threat mitigation

    Phylogenetic Beta Diversity Metrics, Trait Evolution and Inferring the Functional Beta Diversity of Communities

    Get PDF
    The beta diversity of communities along gradients has fascinated ecologists for decades. Traditionally such studies have focused on the species composition of communities, but researchers are becoming increasingly interested in analyzing the phylogenetic composition in the hope of achieving mechanistic insights into community structure. To date many metrics of phylogenetic beta diversity have been published, but few empirical studies have been published. Further inferences made from such phylogenetic studies critically rely on the pattern of trait evolution. The present work provides a study of the phylogenetic dissimilarity of 96 tree communities in India. The work compares and contrasts eight metrics of phylogenetic dissimilarity, considers the role of phylogenetic signal in trait data and shows that environmental distance rather than spatial distance is the best correlate of phylogenetic dissimilarity in the study system

    Chromosome-scale genome assembly of the brown anole (Anolis sagrei), an emerging model species

    Get PDF
    Rapid technological improvements are democratizing access to high quality, chromosome-scale genome assemblies. No longer the domain of only the most highly studied model organisms, now non-traditional and emerging model species can be genome-enabled using a combination of sequencing technologies and assembly software. Consequently, old ideas built on sparse sampling across the tree of life have recently been amended in the face of genomic data drawn from a growing number of high-quality reference genomes. Arguably the most valuable are those long-studied species for which much is already known about their biology; what many term emerging model species. Here, we report a highly complete chromosome-scale genome assembly for the brown anole, Anolis sagrei – a lizard species widely studied across a variety of disciplines and for which a high-quality reference genome was long overdue. This assembly exceeds the vast majority of existing reptile and snake genomes in contiguity (N50 = 253.6 Mb) and annotation completeness. Through the analysis of this genome and population resequence data, we examine the history of repetitive element accumulation, identify the X chromosome, and propose a hypothesis for the evolutionary history of fusions between autosomes and the X that led to the sex chromosomes of A. sagrei

    The first transcriptome of Italian wall lizard, a new tool to infer about the Island Syndrome

    Get PDF
    Some insular lizards show a high degree of differentiation from their conspecific mainland populations, like Licosa island lizards, which are described as affected by Reversed Island Syndrome (RIS). In previous works, we demonstrated that some traits of RIS, as melanization, depend on a differential expression of gene encoding melanocortin receptors. To better understand the basis of syndrome, and providing raw data for future investigations, we generate the first de novo transcriptome of the Italian wall lizard. Comparing mainland and island transcriptomes, we link differences in life-traits to differential gene expression. Our results, taking together testis and brain sequences, generated 275,310 and 269,885 transcripts, 18,434 and 21,606 proteins in Gene Ontology annotation, for mainland and island respectively. Variant calling analysis identified about the same number of SNPs in island and mainland population. Instead, through a differential gene expression analysis we found some putative genes involved in syndrome more expressed in insular samples like Major Histocompatibility Complex class I, Immunoglobulins, Melanocortin 4 receptor, Neuropeptide Y and Proliferating Cell Nuclear Antigen
    corecore