53 research outputs found

    Constraining Non-Standard Interactions with Coherent Elastic Neutrino-Nucleus Scattering at the European Spallation Source

    Full text link
    The European Spallation Source (ESS), currently under construction in Sweden, will provide an intense pulsed neutrino flux allowing for high-statistics measurements of coherent elastic neutrino-nucleus scattering (CE{\nu}NS) with advanced nuclear recoil detectors. In this paper, we investigate in detail the possibility of constraining non-standard neutrino interactions (NSIs) through such precision CE{\nu}NS measurements at the ESS, considering the different proposed detection technologies, either alone or in combination. We first study the sensitivity to neutral-current NSI parameters that each detector can reach in 3 years of data taking. We then show that operating two detectors simultaneously can significantly improve the expected sensitivity on flavor-diagonal NSI parameters. Combining the results of two detectors turns out to be even more useful when two NSI parameters are assumed to be nonvanishing at a time. In this case, suitably chosen detector combinations can reduce the degeneracies between some pairs of NSI parameters to a small region of the parameter space.Comment: 25 pages, 9 figure

    Exploring the sensitivity to non-standard and generalized neutrino interactions through coherent elastic neutrino-nucleus scattering with a NaI detector

    Full text link
    After the first observation of coherent elastic neutrino-nucleus scattering (CEν\nuNS) by the COHERENT collaboration, many efforts are being made to improve the measurement of this process, making it possible to constrain new physics in the neutrino sector. In this paper, we study the sensitivity to non-standard interactions (NSIs) and generalized neutrino interactions (GNIs) of a NaI detector with characteristics similar to the one that is currently being deployed at the Spallation Neutron Source at Oak Ridge National Laboratory. We show that such a detector, whose target nuclei have significantly different proton to neutron ratios (at variance with the current CsI detector), could help to partially break the parameter degeneracies arising from the interference between the Standard Model and NSI contributions to the CEν\nuNS cross section, as well as between different NSI parameters. By contrast, only a slight improvement over the current CsI constraints is expected for parameters that do not interfere with the SM contribution. We find that a significant reduction of the background level would make the NaI detector considered in this paper very efficient at breaking degeneracies among NSI parameters.Comment: 31 pages, 10 pdf figures, and 4 table

    Exploring the sensitivity to non-standard and generalized neutrino interactions through coherent elastic neutrino-nucleus scattering with a NaI detector

    Get PDF
    After the first observation of coherent elastic neutrino-nucleus scattering (CEννNS) by the COHERENT collaboration, many efforts are being made to improve the measurement of this process, making it possible to constrain new physics in the neutrino sector. In this paper, we study the sensitivity to non-standard interactions (NSIs) and generalized neutrino interactions (GNIs) of a NaI detector with characteristics similar to the one that is currently being deployed at the Spallation Neutron Source at Oak Ridge National Laboratory. We show that such a detector, whose target nuclei have significantly different proton to neutron ratios (at variance with the current CsI detector), could help to partially break the parameter degeneracies arising from the interference between the Standard Model and NSI contributions to the CEννNS cross section, as well as between different NSI parameters. By contrast, only a slight improvement over the current CsI constraints is expected for parameters that do not interfere with the SM contribution. We find that a significant reduction of the background level would make the NaI detector considered in this paper very efficient at breaking degeneracies among NSI parameters

    Update on Fermion Mass Models with an Anomalous Horizontal U(1) Symmetry

    Full text link
    We reconsider models of fermion masses and mixings based on a gauge anomalous horizontal U(1) symmetry. In the simplest model with a single flavon field and horizontal charges of the same sign for all Standard Model fields, only very few charge assignements are allowed when all experimental data, including neutrino oscillation data, is taken into account. We show that a precise description of the observed fermion masses and mixing angles can easily be obtained by generating sets of the order one parameters left unconstrained by the U(1) symmetry. The corresponding Yukawa matrices show several interesting features which may be important for flavour changing neutral currents and CP violation effects in supersymmetric models.Comment: 23 pages, 8 figure

    Charged lepton contributions to the solar neutrino mixing and theta_13

    Full text link
    A charged lepton contribution to the solar neutrino mixing induces a contribution to theta_13, barring cancellations/correlations, which is independent of the model building options in the neutrino sector. We illustrate two robust arguments for that contribution to be within the expected sensitivity of high intensity neutrino beam experiments. We find that the case in which the neutrino sector gives rise to a maximal solar angle (the natural situation if the hierarchy is inverse) leads to a theta_13 close to or exceeding the experimental bound depending on the precise values of theta_12, theta_23, an unknown phase and possible additional contributions. We finally discuss the possibility that the solar angle originates predominantly in the charged lepton sector. We find that the construction of a model of this sort is more complicated. We comment on a recent example of natural model of this type.Comment: 10 pages, 1 figur

    Report of the GDR working group on the R-parity violation

    Full text link
    This report summarizes the work of the "R-parity violation group" of the French Research Network (GDR) in Supersymmetry, concerning the physics of supersymmetric models without conservation of R-parity at HERA, LEP, Tevatron and LHC and limits on R-parity violating couplings from various processes. The report includes a discussion of the recent searches at the HERA experiment, prospects for new experiments, a review of the existing limits, and also theoretically motivated alternatives to R-parity and a brief discussion on the implications of R-parity violation on the neutrino masses.Comment: 60 pages, LaTeX, 22 figures, 2 table

    On non-universal Goldstino couplings to matter

    Full text link
    Using the constrained superfields formalism to describe the interactions of a light goldstino to matter fields in supersymmetric models, we identify generalised, higher-order holomorphic superfield constraints that project out the superpartners and capture the non-universal couplings of the goldstino to matter fields. These arise from microscopic theories in which heavy superpartners masses are of the order of the supersymmetry breaking scale (\sqrt f). In the decoupling limit of infinite superpartners masses, these constraints reduce to the familiar, lower-order universal constraints discussed recently, that describe the universal goldstino-matter fields couplings, suppressed by inverse powers of \sqrt f. We initiate the study of the couplings of the Standard Model (SM) fields to goldstino in the constrained superfields formalism.Comment: 28 pages; one comment adde

    Supersymmetry breaking induced by radiative corrections

    Get PDF
    We show that simultaneous gauge and supersymmetry breaking can be induced by radiative corrections, a la Coleman-Weinberg. When a certain correlation among the superpotential parameters is present, a local supersymmetry-breaking minimum is found in the effective potential of a gauge non-singlet field, in a region where the tree-level potential is almost flat. Supersymmetry breaking is then transmitted to the MSSM through gauge and chiral messenger loops, thus avoiding the suppression of gaugino masses characteristic of direct gauge mediation models. The use of a single field ensures that no dangerous tachyonic scalar masses are generated at the one-loop level. We illustrate this mechanism with an explicit example based on an SU(5) model with a single adjoint. An interesting feature of the scenario is that the GUT scale is increased with respect to standard unification, thus allowing for a larger colour Higgs triplet mass, as preferred by the experimental lower bound on the proton lifetime.Comment: 22 pages, 3 figures. Two references added, small redactional changes, some discussion improved. Results unchange

    A New Parametrization of the Seesaw Mechanism and Applications in Supersymmetric Models

    Full text link
    We present a new parametrization of the minimal seesaw model, expressing the heavy-singlet neutrino Dirac Yukawa couplings (Yν)ij(Y_\nu)_{ij} and Majorana masses MNiM_{N_i} in terms of effective light-neutrino observables and an auxiliary Hermitian matrix H.H. In the minimal supersymmetric version of the seesaw model, the latter can be related directly to other low-energy observables, including processes that violate charged lepton flavour and CP. This parametrization enables one to respect the stringent constraints on muon-number violation while studying the possible ranges for other observables by scanning over the allowed parameter space of the model. Conversely, if any of the lepton-flavour-violating process is observed, this measurement can be used directly to constrain (Yν)ij(Y_\nu)_{ij} and MNi.M_{N_i}. As applications, we study flavour-violating τ\tau decays and the electric dipole moments of leptons in the minimal supersymmetric seesaw model.Comment: Important references adde

    The Problem of Large Leptonic Mixing

    Get PDF
    Unlike in the quark sector where simple S3S_3 permutation symmetries can generate the general features of quark masses and mixings, we find it impossible (under conditions of hierarchy for the charged leptons and without considering the see-saw mechanism or a more elaborate extension of the SM) to guarantee large leptonic mixing angles with any general symmetry or transformation of only known particles. If such symmetries exist, they must be realized in more extended scenarios.Comment: RevTeX, 4 pages, no figure
    • …
    corecore