316 research outputs found
Injection of photoelectrons into dense argon gas
The injection of photoelectrons in a gaseous or liquid sample is a widespread
technique to produce a cold plasma in a weakly--ionized system in order to
study the transport properties of electrons in a dense gas or liquid. We report
here the experimental results of photoelectron injection into dense argon gas
at the temperatureT=142.6 K as a function of the externally applied electric
field and gas density. We show that the experimental data can be interpreted in
terms of the so called Young-Bradbury model only if multiple scattering effects
due to the dense environment are taken into account when computing the
scattering properties and the energetics of the electrons.Comment: 18 pages, 10 figures, figure nr. 10 has been redrawn, to be submitted
to Plasma Sources Science and Technolog
Perspectives on fatigue in short-haul flight operations from US pilots: A focus group study
There are few studies investigating the impact of fatigue in short-haul flight operations conducted under United States (US) 14 Code of Federal Regulations Part 117 flight and duty limitations and rest requirements. In order to understand the fatigue factors unique to short-haul operations, we conducted a series of focus groups across four major commercial passenger airlines in the US. Ninety short-haul pilots were recruited through emails distributed by airline safety teams and labor representatives. Fourteen focus groups were conducted via an online conferencing platform in which participants were asked to identify short-haul schedules and operations that they felt: a) elevated fatigue, b) were not fatiguing, and c) were important to study. Data were collected anonymously and coded using conventional qualitative content analysis, with axial coding and summative analysis used to identify main themes and over-arching categories. The six fatigue factor categories identified were: circadian disruption, high workload, inadequate rest opportunity, schedule changes, regulation implementation and policy issues, and long sits. It appears that additional mitigation strategies may be needed to manage fatigue in short-haul operations beyond the current regulations. Future field studies of short-haul operations in the US should investigate the prevalence and impact of these factors
Outcomes with daptomycin in the treatment of Staphylococcus aureus infections with a range of vancomycin MICs
Staphylococcus aureus suggest the use of alternative agents when vancomycin MIC values are ≥2 mg/L. This study examines the outcome of patients treated with daptomycin for S. aureus infections with documented vancomycin MICs. Patients and methods: All patients with skin, bacteraemia and endocarditis infections due to S. aureus with vancomycin MIC values in CORE 2005–08, a retrospective, multicentre, observational registry, were studied. The outcome (cure, improved, failure or non-evaluable) was the investigator assessment at the end of dapto-mycin therapy. Success was defined as cure or improved. Results: Five hundred and forty-seven clinically evaluable patients were identified with discrete vancomycin MIC values [MIC,2 mg/L: 451 (82%); MIC ≥2 mg/L: 96 (18%)]. The vancomycin MIC groups were well matched for patient characteristics, types of infections, first-line daptomycin use (19%) and prior vancomycin use (58%). Clinical success was reported in 94 % of patients. No differences were detected in the daptomycin success rate by the vancomycin MIC group overall or by the infection type. A multivariate logistic regression also failed to identify vancomycin MIC as a predictor of daptomycin failure. Adverse event (AE) rates were not differ-ent when analysed by MIC group; both groups had 17 % of patients with one AE. Conclusions: In this diverse population, daptomycin was associated with similar outcomes for patients, regard-less of whether the vancomycin MIC was categorized as,2 or ≥2 mg/L. Further studies are warranted
Intra-Decadal Increase in Globally-Spread Magallana gigas in Southern California Estuaries
Introduction and establishment of non-indigenous species (NIS) has been accelerated on a global scale by climate change. NIS Magallana gigas\u27 (formerly Crassostrea gigas\u27) global spread over the past several decades has been linked to warming waters, specifically during summer months, raising the specter of more spread due to predicted warming. We tracked changes in density and size distribution of M. gigas in two southern California, USA bays over the decade spanning 2010-2020 using randomly placed quadrats across multiple intertidal habitats (e.g., cobble, seawalls, riprap) and documented density increases by 2.2 to 32.8 times at 7 of the 8 sites surveyed across the two bays. These increases in density were coincident with 2-4° C increases in median monthly seawater temperature during summer months, consistent with global spread of M. gigas elsewhere. Size frequency distribution data, with all size classes represented across sites, suggest now-regular recruitment of M. gigas. Our data provide a baseline against which to compare future changes in density and abundance of a globally-spread NIS of significant concern
Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis
open24siSelenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4cys/cys cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.openIngold, Irina; Berndt, Carsten; Schmitt, Sabine; Doll, Sebastian; Poschmann, Gereon; Buday, Katalin; Roveri, Antonella; Peng, Xiaoxiao; Porto Freitas, Florencio; Seibt, Tobias; Mehr, Lisa; Aichler, Michaela; Walch, Axel; Lamp, Daniel; Jastroch, Martin; Miyamoto, Sayuri; Wurst, Wolfgang; Ursini, Fulvio; Arnér, Elias S J; Fradejas-Villar, Noelia; Schweizer, Ulrich; Zischka, Hans; Friedmann Angeli, José Pedro; Conrad, MarcusIngold, Irina; Berndt, Carsten; Schmitt, Sabine; Doll, Sebastian; Poschmann, Gereon; Buday, Katalin; Roveri, Antonella; Peng, Xiaoxiao; Porto Freitas, Florencio; Seibt, Tobias; Mehr, Lisa; Aichler, Michaela; Walch, Axel; Lamp, Daniel; Jastroch, Martin; Miyamoto, Sayuri; Wurst, Wolfgang; Ursini, Fulvio; Arnér, Elias S J; Fradejas-Villar, Noelia; Schweizer, Ulrich; Zischka, Hans; Friedmann Angeli, José Pedro; Conrad, Marcu
System Engineering Paper
The Iowa State University team, Team LunaCY, is composed of the following sub-teams: the main student organization, the Lunabotics Club; a senior mechanical engineering design course, ME 415; a senior multidisciplinary design course, ENGR 466; and a senior design course from Wartburg College in Waverly, Iowa. Team LunaCY designed and fabricated ART-E III, Astra Robotic Tractor- Excavator the Third, for the team's third appearance in the NASA Lunabotic Mining competition. While designing ART-E III, the team had four main goals for this year's competition:to reduce the total weight of the robot, to increase the amount of regolith simulant mined, to reduce dust, and to make ART-E III autonomous. After many designs and research, a final robot design was chosen that obtained all four goals of Team LunaCY. A few changes Team LunaCY made this year was to go to the electrical, computer, and software engineering club fest at Iowa State University to recruit engineering students to accomplish the task of making ART-E III autonomous. Team LunaCY chose to use LabView to program the robot and various sensors were installed to measure the distance between the robot and the surroundings to allow ART-E III to maneuver autonomously. Team LunaCY also built a testing arena to test prototypes and ART-E III in. To best replicate the competition arena at the Kennedy Space Center, a regolith simulant was made from sand, QuickCrete, and fly ash to cover the floor of the arena. Team LunaCY also installed fans to allow ventilation in the arena and used proper safety attire when working in the arena . With the additional practice in the testing arena and innovative robot design, Team LunaCY expects to make a strong appearance at the 2012 NASA Lunabotic Mining Competition.
- …