1,673 research outputs found

    PNJL model with a Van der Monde term

    Full text link
    We extend the Polyakov-Nambu-Jona-Lasinio (PNJL) model for two degenerate flavours by including the effect of the SU(3) measure with a Van der Monde (VdM) term. This ensures that the Polyakov loop always remains in the domain [0,1]. The pressure, energy density, specific heat, speed of sound and conformal measure show small or negligible effects from this term. However various quark number and isospin susceptibilities are all found to approach their respective ideal gas limits around 2 TcT_c. We compare our methods with other similar approaches in PNJL model and also present a quantitative comparison with Lattice QCD data.Comment: 12 pages, 8 eps figures; extended discussion and reference added; accepted in Phys. Rev.

    Renormalized Polyakov loops in many representations

    Full text link
    We present a renormalization procedure for Polyakov loops which explicitly implements the fact that the renormalization constant depends only on the ultraviolet cutoff. Using this we study the renormalized Polyakov loops in all representations upto the {\bf 27} of the gauge group SU(3). We find good evidence for Casimir scaling of the Polyakov loops and for approximate large-N factorization. By studying many loops together, we are able to show that there is a matrix model with a single coupling which can describe the high temperature phase of QCD, although it is hard to construct explicitly. We present the first results for the non-vanishing renormalized octet loop in the thermodynamic limit below the SU(3) phase transition, and estimate the associated string breaking distance and the gluelump binding energy. By studying the connection of the direct renormalization procedure with a generalization of an earlier suggestion which goes by the name of the QQˉQ\bar Q renormalization procedure, we find that they are functionally equivalent.Comment: 17 pages, 24 figures, revtex

    Atom chips with two-dimensional electron gases: theory of near surface trapping and ultracold-atom microscopy of quantum electronic systems

    Full text link
    We show that current in a two-dimensional electron gas (2DEG) can trap ultracold atoms <1μ<1 \mum away with orders of magnitude less spatial noise than a metal trapping wire. This enables the creation of hybrid systems, which integrate ultracold atoms with quantum electronic devices to give extreme sensitivity and control: for example, activating a single quantized conductance channel in the 2DEG can split a Bose-Einstein condensate (BEC) for atom interferometry. In turn, the BEC offers unique structural and functional imaging of quantum devices and transport in heterostructures and graphene.Comment: 5 pages, 4 figures, minor change

    Matter formed at the BNL relativistic heavy ion collider

    Full text link
    We suggest that the "new form of matter" found just above TcT_c by RHIC is made up of tightly bound quark-antiquark pairs, essentially 32 chirally restored (more precisely, nearly massless) mesons of the quantum numbers of π\pi, σ\sigma, ρ\rho and a1a_1. Taking the results of lattice gauge simulations (LGS) for the color Coulomb potential from the work of the Bielefeld group and feeding this into a relativistic two-body code, after modifying the heavy-quark lattice results so as to include the velocity-velocity interaction, all ground-state eigenvalues of the 32 mesons go to zero at TcT_c just as they do from below TcT_c as predicted by the vector manifestation (VM in short) of hidden local symmetry. This could explain the rapid rise in entropy up to TcT_c found in LGS calculations. We argue that how the dynamics work can be understood from the behavior of the hard and soft glue.Comment: Final versio

    Determination of Freeze-out Conditions from Lattice QCD Calculations

    Full text link
    Freeze-out conditions in Heavy Ion Collisions are generally determined by comparing experimental results for ratios of particle yields with theoretical predictions based on applications of the Hadron Resonance Gas model. We discuss here how this model dependent determination of freeze-out parameters may eventually be replaced by theoretical predictions based on equilibrium QCD thermodynamics.Comment: presented at the International Conference "Critical Point and Onset of Deconfinement - CPOD 2011", Wuhan, November 7-11, 201

    Thermal optical non-linearity of nematic mesophase enhanced by gold nanoparticles – an experimental and numerical investigation

    Get PDF
    In this work the mechanisms leading to the enhancement of optical nonlinearity of nematic liquid crystalline material through localized heating by doping the liquid crystals (LCs) with gold nanoparticles (GNPs) are investigated. We present some experimental and theoretical results on the effect of voltage and nanoparticle concentration on the nonlinear response of GNP-LC suspensions. The optical nonlinearity of these systems is characterized by diffraction measurements and the second order nonlinear refractive index, n 2 , is used to compare systems with different configurations and operating conditions. A theoretical model based on heat diffusion that takes into account the intensity and finite size of the incident beam, the nanoparticle concentration dependent absorbance of GNP doped LC systems and the presence of bounding substrates is developed and validated. We use the model to discuss the possibilities of further enhancing the optical nonlinearity

    Quarkonia and Heavy-Quark Relaxation Times in the Quark-Gluon Plasma

    Get PDF
    A thermodynamic T-matrix approach for elastic 2-body interactions is employed to calculate spectral functions of open and hidden heavy-quark systems in the Quark-Gluon Plasma. This enables the evaluation of quarkonium bound-state properties and heavy-quark diffusion on a common basis and thus to obtain mutual constraints. The two-body interaction kernel is approximated within a potential picture for spacelike momentum transfers. An effective field-theoretical model combining color-Coulomb and confining terms is implemented with relativistic corrections and for different color channels. Four pertinent model parameters, characterizing the coupling strengths and screening, are adjusted to reproduce the color-average heavy-quark free energy as computed in thermal lattice QCD. The approach is tested against vacuum spectroscopy in the open (D, B) and hidden (Psi and Upsilon) flavor sectors, as well as in the high-energy limit of elastic perturbative QCD scattering. Theoretical uncertainties in the static reduction scheme of the 4-dimensional Bethe-Salpeter equation are elucidated. The quarkonium spectral functions are used to calculate Euclidean correlators which are discussed in light of lattice QCD results, while heavy-quark relaxation rates and diffusion coefficients are extracted utilizing a Fokker-Planck equation.Comment: 33 pages, 28 figure

    Static QˉQ\bar Q Q Potentials and the Magnetic Component of QCD Plasma near TcT_c

    Full text link
    Static quark-anti-quark potential encodes important information on the chromodynamical interaction between color charges, and recent lattice results show its very nontrivial behavior near the deconfinement temperature TcT_c. In this paper we study such potential in the framework of the ``magnetic scenario'' for the near Tc QCD plasma, and particularly focus on the linear part (as quantified by its slope, the tension) in the potential as well as the strong splitting between the free energy and internal energy. By using an analytic ``ellipsoidal bag'' model, we will quantitatively relate the free energy tension to the magnetic condensate density and relate the internal energy tension to the thermal monopole density. By converting the lattice results for static potential into density for thermal monopoles we find the density to be very large around Tc and indicate at quantum coherence, in good agreement with direct lattice calculation of such density. A few important consequences for heavy ion collisions phenomenology will also be discussed.Comment: 10 pages, 6 figure

    Gauge invariant effective action for the Polyakov line in the SU(N) Yang--Mills theory at high temperatures

    Full text link
    We integrate out fast varying quantum fluctuations around static A_4 and A_i fields for the SU(N) gauge group. By assuming that the gluon fields are slowly varying but allowing for an arbitrary amplitude of A_4 we obtain two variants of the effective high-temperature theory for the Polyakov line. One is the effective action for the gauge-invariant eigenvalues of the Polyakov line, and it is explicitly Z(N) symmetric. The other is the effective action for the Polyakov line itself as an element of the SU(N). In this case the theory necessarily includes the spatial components A_i to ensure its gauge invariance under spatial gauge transformations. We derive the 1-loop effective action in the `electric' and `magnetic' sectors, summing up all powers of A_4.Comment: RevTex4, 2 figure

    Critical Behavior of J/psi across the Phase Transition from QCD sum rules

    Full text link
    We study behavior of J/psi in hot gluonic matter using QCD sum rules. Taking into account temperature dependences of the gluon condensates extracted from lattice thermodynamics for the pure SU(3) system, we find that the mass and width of J/psi exhibit rapid change across the critical temperature.Comment: 5 pages, 3 figures. Poster contribution for Quark Matter 2008. To be published in the proceeding
    corecore