161 research outputs found

    Non-linear inflationary perturbations

    Full text link
    We present a method by which cosmological perturbations can be quantitatively studied in single and multi-field inflationary models beyond linear perturbation theory. A non-linear generalization of the gauge-invariant Sasaki-Mukhanov variables is used in a long-wavelength approximation. These generalized variables remain invariant under time slicing changes on long wavelengths. The equations they obey are relatively simple and can be formulated for a number of time slicing choices. Initial conditions are set after horizon crossing and the subsequent evolution is fully non-linear. We briefly discuss how these methods can be implemented numerically in the study of non-Gaussian signatures from specific inflationary models.Comment: 10 pages, replaced to match JCAP versio

    Quantitative bispectra from multifield inflation

    Full text link
    After simplifying and improving the non-Gaussian formalism we developed in previous work, we derive a quantitative expression for the three-point correlator (bispectrum) of the curvature perturbation in general multiple-field inflation models. Our result describes the evolution of non-Gaussianity on superhorizon scales caused by the nonlinear influence of isocurvature perturbations on the adiabatic perturbation during inflation. We then study a simple quadratic two-field potential and find that when slow roll breaks down and the field trajectory changes direction in field space, the non-Gaussianity can become large. However, for the simple models studied to date, the magnitude of this non-Gaussianity decays away after the isocurvature mode is converted into the adiabatic mode.Comment: 7 pages, 1 figure. v4: Added remarks on momentum dependence, minor textual changes, matches published versio

    Simple route to non-Gaussianity in inflation

    Full text link
    We present a simple way to calculate non-Gaussianity in inflation using fully non-linear equations on long wavelengths with stochastic sources to take into account the short-wavelength quantum fluctuations. Our formalism includes both scalar metric and matter perturbations, combining them into variables which are invariant under changes of time slicing in the long-wavelength limit. We illustrate this method with a perturbative calculation in the single-field slow-roll case. We also introduce a convenient choice of variables to graphically present the full momentum dependence of the three-point correlator.Comment: 6 pages, 2 figures. v2: Updated formalism to version described in astro-ph/0504508, leading to dropping of one unnecessary approximation. Final results not significantly changed. Extended discussion of calculation and added graphical presentation of full momentum dependence. References corrected and added. v3: Final version, only small textual change

    Large non-Gaussianity in multiple-field inflation

    Full text link
    We investigate non-Gaussianity in general multiple-field inflation using the formalism we developed in earlier papers. We use a perturbative expansion of the non-linear equations to calculate the three-point correlator of the curvature perturbation analytically. We derive a general expression that involves only a time integral over background and linear perturbation quantities. We work out this expression explicitly for the two-field slow-roll case, and find that non-Gaussianity can be orders of magnitude larger than in the single-field case. In particular, the bispectrum divided by the square of the power spectrum can easily be of O(1-10), depending on the model. Our result also shows the explicit momentum dependence of the bispectrum. This conclusion of large non-Gaussianity is confirmed in a semi-analytic slow-roll investigation of a simple quadratic two-field model.Comment: 21 pages, 9 figures. v4: Minor textual changes to match published version. In addition, and superseding the published version, a small error in X and X-bar has been corrected; no significant changes to the final results. Note that an extended (no slow roll) numerical treatment superseding section V.D is available in astro-ph/051104

    Non-Gaussian perturbations from multi-field inflation

    Get PDF
    We show how the primordial bispectrum of density perturbations from inflation may be characterised in terms of manifestly gauge-invariant cosmological perturbations at second order. The primordial metric perturbation, zeta, describing the perturbed expansion of uniform-density hypersurfaces on large scales is related to scalar field perturbations on unperturbed (spatially-flat) hypersurfaces at first- and second-order. The bispectrum of the metric perturbation is thus composed of (i) a local contribution due to the second-order gauge-transformation, and (ii) the instrinsic bispectrum of the field perturbations on spatially flat hypersurfaces. We generalise previous results to allow for scale-dependence of the scalar field power spectra and correlations that can develop between fields on super-Hubble scales.Comment: 11 pages, RevTex; minor changes to text; conclusions unchanged; version to appear in JCA

    The Scalar Field Kernel in Cosmological Spaces

    Full text link
    We construct the quantum mechanical evolution operator in the Functional Schrodinger picture - the kernel - for a scalar field in spatially homogeneous FLRW spacetimes when the field is a) free and b) coupled to a spacetime dependent source term. The essential element in the construction is the causal propagator, linked to the commutator of two Heisenberg picture scalar fields. We show that the kernels can be expressed solely in terms of the causal propagator and derivatives of the causal propagator. Furthermore, we show that our kernel reveals the standard light cone structure in FLRW spacetimes. We finally apply the result to Minkowski spacetime, to de Sitter spacetime and calculate the forward time evolution of the vacuum in a general FLRW spacetime.Comment: 13 pages, 1 figur

    Non-Gaussianity in braneworld and tachyon inflation

    Full text link
    We calculate the bispectrum of single-field braneworld inflation, triggered by either an ordinary scalar field or a cosmological tachyon, by means of a gradient expansion of large-scale non-linear perturbations coupled to stochastic dynamics. The resulting effect is identical to that for single-field 4D standard inflation, the non-linearity parameter being proportional to the scalar spectral index in the limit of collapsing momentum. If the slow-roll approximation is assumed, braneworld and tachyon non-Gaussianities are subdominant with respect to the post-inflationary contribution. However, bulk physics may considerably strengthen the non-linear signatures. These features do not change significantly when considered in a non-commutative framework.Comment: 17 pages; v2: added references and previously skipped details in the derivation of the result; v3: improved discussio
    corecore