322 research outputs found
SN 2006bp: Probing the Shock Breakout of a Type II-P Supernova
HET optical spectroscopy and unfiltered ROTSE-III photometry spanning the
first 11 months since explosion of the Type II-P SN 2006bp are presented. Flux
limits from the days before discovery combined with the initial rapid
brightening suggest the supernova was first detected just hours after shock
breakout. Optical spectra obtained about 2 days after breakout exhibit narrow
emission lines corresponding to HeII 4200, HeII 4686, and CIV 5805 in the rest
frame, and these features persist in a second observation obtained 5 hours
later; however, these emission lines are not detected the following night nor
in subsequent observations. We suggest that these lines emanate from material
close to the explosion site, possibly in the outer layers of the progenitor
that have been ionized by the high energy photons released at shock breakout. A
P-Cygni profile is observed around 4450 A in the +2 and +3 day spectra.
Previous studies have attributed this feature to high velocity H-beta, but we
discuss the possibility that this profile is instead due to HeII 4687. Further
HET observations (14 nights in total) covering the spectral evolution across
the photometric plateau up to 73 days after breakout and during the nebular
phase around day +340 are presented, and expansion velocities are derived for
key features. The measured decay slope for the unfiltered light curve is 0.0073
+/- 0.0004 mag/day between days +121 and +335, which is significantly slower
than the decay of rate 56Co. We combine our HET measurements with published
X-ray, UV, and optical data to obtain a quasi-bolometric light curve through
day +60. We see a slow cooling over the first 25 days, but no sign of an early
sharp peak; any such feature from the shock breakout must have lasted less than
~1 day.[ABRIDGED]Comment: ApJ accepted, 43 page
Properties of Newly Formed Dust Grains in The Luminous Type IIn Supernova 2010jl
Supernovae (SNe) have been proposed to be the main production sites of dust
grains in the Universe. Our knowledge on their importance to dust production
is, however, limited by observationally poor constraints on the nature and
amount of dust particles produced by individual SNe. In this paper, we present
a spectrum covering optical through near-Infrared (NIR) light of the luminous
Type IIn supernova (SN IIn) 2010jl around one and half years after the
explosion. This unique data set reveals multiple signatures of newly formed
dust particles. The NIR portion of the spectrum provides a rare example where
thermal emission from newly formed hot dust grains is clearly detected. We
determine the main population of the dust species to be carbon grains at a
temperature of ~1,350 - 1,450K at this epoch. The mass of the dust grains is
derived to be ~(7.5 - 8.5) x 10^{-4} Msun. Hydrogen emission lines show
wavelength-dependent absorption, which provides a good estimate on the typical
size of the newly formed dust grains (~0.1 micron, and most likely <~0.01
micron). We attribute the dust grains to have been formed in a dense cooling
shell as a result of a strong SN-circumstellar media (CSM) interaction. The
dust grains occupy ~10% of the emitting volume, suggesting an inhomogeneous,
clumpy structure. The average CSM density is required to be >~3 x 10^{7}
cm^{-3}, corresponding to a mass loss rate of >~0.02 Msun yr^{-1} (for a mass
loss wind velocity of ~100 km s^{-1}). This strongly supports a scenario that
SN 2010jl and probably other luminous SNe IIn are powered by strong
interactions within very dense CSM, perhaps created by Luminous Blue Variable
(LBV)-like eruptions within the last century before the explosion.Comment: 18 pages, 11 figures. Accepted by ApJ on 30 July 2013. The accepted
version was submitted on 8 July 2013, and the original version was submitted
on 3 March 201
Hydrogen-poor superluminous stellar explosions
Supernovae (SNe) are stellar explosions driven by gravitational or
thermonuclear energy, observed as electromagnetic radiation emitted over weeks
or more. In all known SNe, this radiation comes from internal energy deposited
in the outflowing ejecta by either radioactive decay of freshly-synthesized
elements (typically 56Ni), stored heat deposited by the explosion shock in the
envelope of a supergiant star, or interaction between the SN debris and
slowly-moving, hydrogen-rich circumstellar material. Here we report on a new
class of luminous SNe whose observed properties cannot be explained by any of
these known processes. These include four new SNe we have discovered, and two
previously unexplained events (SN 2005ap; SCP 06F6) that we can now identify as
members. These SNe are all ~10 times brighter than SNe Ia, do not show any
trace of hydrogen, emit significant ultra-violet (UV) flux for extended periods
of time, and have late-time decay rates which are inconsistent with
radioactivity. Our data require that the observed radiation is emitted by
hydrogen-free material distributed over a large radius (~10^15 cm) and
expanding at high velocities (>10^4 km s^-1). These long-lived, UV-luminous
events can be observed out to redshifts z>4 and offer an excellent opportunity
to study star formation in, and the interstellar medium of, primitive distant
galaxies.Comment: Accepted to Nature. Press embargoed until 2011 June 8, 18:00 U
The Palomar Transient Factory photometric catalog 1.0
We construct a photometrically calibrated catalog of non-variable sources
from the Palomar Transient Factory (PTF) observations. The first version of
this catalog presented here, the PTF photometric catalog 1.0, contains
calibrated R_PTF-filter magnitudes for about 21 million sources brighter than
magnitude 19, over an area of about 11233 deg^2. The magnitudes are provided in
the PTF photometric system, and the color of a source is required in order to
convert these magnitudes into other magnitude systems. We estimate that the
magnitudes in this catalog have typical accuracy of about 0.02 mag with respect
to magnitudes from the Sloan Digital Sky Survey. The median repeatability of
our catalog's magnitudes for stars between 15 and 16 mag, is about 0.01 mag,
and it is better than 0.03 mag for 95% of the sources in this magnitude range.
The main goal of this catalog is to provide reference magnitudes for
photometric calibration of visible light observations. Subsequent versions of
this catalog, which will be published incrementally online, will be extended to
a larger sky area and will also include g_PTF-filter magnitudes, as well as
variability and proper motion information.Comment: 6 pages, 6 figures, PASP in pres
Light curves of hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory
We investigate the light-curve properties of a sample of 26 spectroscopically
confirmed hydrogen-poor superluminous supernovae (SLSNe-I) in the Palomar
Transient Factory (PTF) survey. These events are brighter than SNe Ib/c and SNe
Ic-BL, on average, by about 4 and 2~mag, respectively. The peak absolute
magnitudes of SLSNe-I in rest-frame band span ~mag, and these peaks are not powered by radioactive Ni,
unless strong asymmetries are at play. The rise timescales are longer for SLSNe
than for normal SNe Ib/c, by roughly 10 days, for events with similar decay
times. Thus, SLSNe-I can be considered as a separate population based on
photometric properties. After peak, SLSNe-I decay with a wide range of slopes,
with no obvious gap between rapidly declining and slowly declining events. The
latter events show more irregularities (bumps) in the light curves at all
times. At late times, the SLSN-I light curves slow down and cluster around the
Co radioactive decay rate. Powering the late-time light curves with
radioactive decay would require between 1 and 10 of Ni masses.
Alternatively, a simple magnetar model can reasonably fit the majority of
SLSNe-I light curves, with four exceptions, and can mimic the radioactive decay
of Co, up to days from explosion. The resulting spin values do
not correlate with the host-galaxy metallicities. Finally, the analysis of our
sample cannot strengthen the case for using SLSNe-I for cosmology.Comment: 120 pages, 48 figures, 78 tables. ApJ in pres
Evidence for energy injection and a fine-tuned central engine at optical wavelengths in GRB 070419A
We present a comprehensive multiwavelength temporal and spectral analysis of
the FRED GRB 070419A. The early-time emission in the -ray and X-ray
bands can be explained by a central engine active for at least 250 s, while at
late times the X-ray light curve displays a simple power-law decay. In
contrast, the observed behaviour in the optical band is complex (from 10 up
to 10 s). We investigate the light curve behaviour in the context of the
standard forward/reverse shock model; associating the peak in the optical light
curve at 450 s with the fireball deceleration time results in a Lorenz
factor at this time. In contrast, the shallow optical
decay between 450 and 1500 s remains problematic, requiring a reverse shock
component whose typical frequency is above the optical band at the optical peak
time for it to be explained within the standard model. This predicts an
increasing flux density for the forward shock component until t 4
10 s, inconsistent with the observed decay of the optical emission
from t 10 s. A highly magnetized fireball is also ruled out due to
unrealistic microphysic parameters and predicted light curve behaviour that is
not observed. We conclude that a long-lived central engine with a finely tuned
energy injection rate and a sudden cessation of the injection is required to
create the observed light curves - consistent with the same conditions that are
invoked to explain the plateau phase of canonical X-ray light curves of GRBs.Comment: 9 pages, 10 figures, accepted for publication in MNRA
The Science Case for PILOT I: Summary and Overview
Original article can be found at: http://www.publish.csiro.au/?nid=139&aid=108 DOI: 10.1071/AS08048 [Open access article]PILOT (the Pathfinder for an International Large Optical Telescope) is a proposed 2.5-m optical/infrared telescope to be located at Dome C on the Antarctic plateau. Conditions at Dome C are known to be exceptional for astronomy. The seeing (above ∼30 m height), coherence time, and isoplanatic angle are all twice as good as at typical mid-latitude sites, while the water-vapour column, and the atmosphere and telescope thermal emission are all an order of magnitude better. These conditions enable a unique scientific capability for PILOT, which is addressed in this series of papers. The current paper presents an overview of the optical and instrumentation suite for PILOT and its expected performance, a summary of the key science goals and observational approach for the facility, a discussion of the synergies between the science goals for PILOT and other telescopes, and a discussion of the future of Antarctic astronomy. Paper II and Paper III present details of the science projects divided, respectively, between the distant Universe (i.e. studies of first light, and the assembly and evolution of structure) and the nearby Universe (i.e. studies of Local Group galaxies, the Milky Way, and the Solar System).Peer reviewe
Spectroscopic Observations and Analysis of the Unusual Type Ia SN 1999ac
We present optical spectra of the peculiar Type Ia supernova (SN Ia) 1999ac.
The data extend from -15 to +42 days with respect to B-band maximum and reveal
an event that is unusual in several respects. Prior to B-band maximum, the
spectra resemble those of SN 1999aa, a slowly declining event, but possess
stronger SiII and CaII signatures (more characteristic of a spectroscopically
normal SN). Spectra after B-band maximum appear more normal. The expansion
velocities inferred from the Iron lines appear to be lower than average;
whereas, the expansion velocity inferred from Calcium H and K are higher than
average. The expansion velocities inferred from SiII are among the slowest ever
observed, though SN 1999ac is not particularly dim. The analysis of the
parameters v_10, R(SiII), dv(SiII)/dt, and d_m15 further underlines the unique
characteristics of SN 1999ac. We find convincing evidence of CII 6580 in the
day -15 spectrum with ejection velocity v > 16,000 km/s, but this signature
disappears by day -9. This rapid evolution at early times highlights the
importance of extremely early-time spectroscopy.Comment: 40 pages, 24 figures, accepted for publication in The Astronomical
Journa
Supernova 2007bi as a pair-instability explosion
Stars with initial masses 10 M_{solar} < M_{initial} < 100 M_{solar} fuse
progressively heavier elements in their centres, up to inert iron. The core
then gravitationally collapses to a neutron star or a black hole, leading to an
explosion -- an iron-core-collapse supernova (SN). In contrast, extremely
massive stars (M_{initial} > 140 M_{solar}), if such exist, have oxygen cores
which exceed M_{core} = 50 M_{solar}. There, high temperatures are reached at
relatively low densities. Conversion of energetic, pressure-supporting photons
into electron-positron pairs occurs prior to oxygen ignition, and leads to a
violent contraction that triggers a catastrophic nuclear explosion. Tremendous
energies (>~ 10^{52} erg) are released, completely unbinding the star in a
pair-instability SN (PISN), with no compact remnant. Transitional objects with
100 M_{solar} < M_{initial} < 140 M_{solar}, which end up as iron-core-collapse
supernovae following violent mass ejections, perhaps due to short instances of
the pair instability, may have been identified. However, genuine PISNe, perhaps
common in the early Universe, have not been observed to date. Here, we present
our discovery of SN 2007bi, a luminous, slowly evolving supernova located
within a dwarf galaxy (~1% the size of the Milky Way). We measure the exploding
core mass to be likely ~100 M_{solar}, in which case theory unambiguously
predicts a PISN outcome. We show that >3 M_{solar} of radioactive 56Ni were
synthesized, and that our observations are well fit by PISN models. A PISN
explosion in the local Universe indicates that nearby dwarf galaxies probably
host extremely massive stars, above the apparent Galactic limit, perhaps
resulting from star formation processes similar to those that created the first
stars in the Universe.Comment: Accepted version of the paper appearing in Nature, 462, 624 (2009),
including all supplementary informatio
Supernova PTF 09uj: A possible shock breakout from a dense circumstellar wind
Type-IIn supernovae (SNe), which are characterized by strong interaction of
their ejecta with the surrounding circumstellar matter (CSM), provide a unique
opportunity to study the mass-loss history of massive stars shortly before
their explosive death. We present the discovery and follow-up observations of a
Type IIn SN, PTF 09uj, detected by the Palomar Transient Factory (PTF).
Serendipitous observations by GALEX at ultraviolet (UV) wavelengths detected
the rise of the SN light curve prior to the PTF discovery. The UV light curve
of the SN rose fast, with a time scale of a few days, to a UV absolute AB
magnitude of about -19.5. Modeling our observations, we suggest that the fast
rise of the UV light curve is due to the breakout of the SN shock through the
dense CSM (n~10^10 cm^-3). Furthermore, we find that prior to the explosion the
progenitor went through a phase of high mass-loss rate (~0.1 solar mass per
year) that lasted for a few years. The decay rate of this SN was fast relative
to that of other SNe IIn.Comment: Accepted to Apj, 6 pages, 4 figure
- …