202 research outputs found

    Mission design for LISA Pathfinder

    Full text link
    Here we describe the mission design for SMART-2/LISA Pathfinder. The best trade-off between the requirements of a low-disturbance environment and communications distance is found to be a free-insertion Lissajous orbit around the first co-linear Lagrange point of the Sun-Earth system L1, 1.5x 10^6 km from Earth. In order to transfer SMART-2/LISA Pathfinder from a low Earth orbit, where it will be placed by a small launcher, the spacecraft carries out a number of apogee-raise manoeuvres, which ultimatively place it to a parabolic escape trajectory towards L1. The challenges of the design of a small mission are met, fulfilling the very demanding technology demonstration requirements without creating excessive requirements on the launch system or the ground segment.Comment: 7 pages, 6 figures, 5th International LISA Symposium, see http://www.landisoft.de/Markus-Landgra

    GABAB receptor-mediated activation of astrocytes by gamma-hydroxybutyric acid

    Get PDF
    The gamma-aminobutyric acid (GABA) metabolite gamma-hydroxybutyric acid (GHB) shows a variety of behavioural effects when administered to animals and humans, including reward/addiction properties and absence seizures. At the cellular level, these actions of GHB are mediated by activation of neuronal GABAB receptors (GABABRs) where it acts as a weak agonist. Because astrocytes respond to endogenous and exogenously applied GABA by activation of both GABAA and GABABRs, here we investigated the action of GHB on astrocytes on the ventral tegmental area (VTA) and the ventrobasal (VB) thalamic nucleus, two brain areas involved in the reward and proepileptic action of GHB, respectively, and compared it with that of the potent GABABR agonist baclofen. We found that GHB and baclofen elicited dose-dependent (ED50: 1.6 mM and 1.3 µM, respectively) transient increases in intracellular Ca2+ in VTA and VB astrocytes of young mice and rats, which were accounted for by activation of their GABABRs and mediated by Ca2+ release from intracellular store release. In contrast, prolonged GHB and baclofen exposure caused a reduction in spontaneous astrocyte activity and glutamate release from VTA astrocytes. These findings have key (patho)physiological implications for our understanding of the addictive and proepileptic actions of GHB

    Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death

    Get PDF
    The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer. Cell Death and Disease (2010) 1, e9; doi:10.1038/cddis.2009.11; published online 14 January 201

    The P2Y1 receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice

    Get PDF
    Pancreatic β cells express several P2 receptors including P2Y1 and the modulation of insulin secretion by extracellular nucleotides has suggested that these receptors may contribute to the regulation of glucose homeostasis. To determine whether the P2Y1 receptor is involved in this process, we performed studies in P2Y1 mice. In baseline conditions, P2Y1-mice exhibited a 15% increase in glycemia and a 40% increase in insulinemia, associated with a 10% increase in body weight, pointing to a role of the P2Y1 receptor in the control of glucose metabolism. Dynamic experiments further showed that P2Y1-mice exhibited a tendency to glucose intolerance. These features were associated with a decrease in the plasma levels of free fatty acid and triglycerides. When fed a lipids and sucrose enriched diet for 15 weeks, the two genotypes no longer displayed any significant differences. To determine whether the P2Y1 receptor was directly involved in the control of insulin secretion, experiments were carried out in isolated Langerhans islets. In the presence of high concentrations of glucose, insulin secretion was significantly greater in islets from P2Y1-mice. Altogether, these results show that the P2Y1 receptor plays a physiological role in the maintenance of glucose homeostasis at least in part by regulating insulin secretion

    MHCII-independent CD4(+) T cells protect injured CNS neurons via IL-4

    Get PDF
    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell-mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4-producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4-deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4-deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell-derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4-producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration

    P2X7 receptors induce degranulation in human mast cells.

    Get PDF
    Mast cells play important roles in host defence against pathogens, as well as being a key effector cell in diseases with an allergic basis such as asthma and an increasing list of other chronic inflammatory conditions. Mast cells initiate immune responses through the release of newly synthesised eicosanoids and the secretion of pre-formed mediators such as histamine which they store in specialised granules. Calcium plays a key role in regulating both the synthesis and secretion of mast-cell-derived mediators, with influx across the membrane, in particular, being necessary for degranulation. This raises the possibility that calcium influx through P2X receptors may lead to antigen-independent secretion of histamine and other granule-derived mediators from human mast cells. Here we show that activation of P2X7 receptors with both ATP and BzATP induces robust calcium rises in human mast cells and triggers their degranulation; both effects are blocked by the P2X7 antagonist AZ11645373, or the removal of calcium from the extracellular medium. Activation of P2X1 receptors with αβmeATP also induces calcium influx in human mast cells, which is significantly reduced by both PPADS and NF 449. P2X1 receptor activation, however, does not trigger degranulation. The results indicate that P2X7 receptors may play a significant role in contributing to the unwanted activation of mast cells in chronic inflammatory conditions where extracellular ATP levels are elevated

    Functionalized Congeners of P2Y 1 Receptor Antagonists: 2-Alkynyl ( N )-Methanocarba 2′-Deoxyadenosine 3′,5′-Bisphosphate Analogues and Conjugation to a Polyamidoamine (PAMAM) Dendrimer Carrier

    Get PDF
    The P2Y1 receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3′,5′-bisphosphate antagonists of the P2Y1 receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphates containing extended 2-alkynyl chains was designed and binding affinity at the human (h) P2Y1 receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of an intermediate amide group revealed high affinity of carboxylic congener 8 (Ki 23 nM) and extended amine congener 15 (Ki 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended ε-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y1 receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y1 receptor modeling and ligand docking. Attempted P2Y1 antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM dendrimer to produce a multivalent conjugate exhibiting a desired biological effect, i.e. antithrombotic action

    Residual platelet ADP reactivity after clopidogrel treatment is dependent on activation of both the unblocked P2Y1 and the P2Y12 receptor and is correlated with protein expression of P2Y12

    Get PDF
    Two ADP receptors have been identified on human platelets: P2Y1 and P2Y12. The P2Y12 receptor blocker clopidogrel is widely used to reduce the risks in acute coronary syndromes, but, currently, there is no P2Y1 blocker in clinical use. Evidence for variable responses to clopidogrel has been described in several reports. The mechanistic explanation for this phenomenon is not fully understood. The aim of this study was to examine mechanisms responsible for variability of 2MeS-ADP, a stable ADP analogue, induced platelet reactivity in clopidogrel-treated patients. Platelet reactivity was assessed by flow cytometry measurements of P-selectin (CD62P) and activated GpIIb/IIIa complex (PAC-1). Residual 2MeS-ADP activation via the P2Y12 and P2Y1 receptors was determined by co-incubation with the selective antagonists AR-C69931 and MRS2179 in vitro. P2Y1 and P2Y12 receptor expression on both RNA and protein level were determined, as well as the P2Y12 H1 or H2 haplotypes. Our data suggest that the residual platelet activation of 2MeS-ADP after clopidogrel treatment is partly due to an inadequate antagonistic effect of clopidogrel on the P2Y12 receptor and partly due to activation of the P2Y1 receptor, which is unaffected by clopidogrel. Moreover, a correlation between increased P2Y12 protein expression on platelets and decreased response to clopidogrel was noticed, r2=0.43 (P<0.05). No correlation was found between P2Y12 mRNA levels and clopidogrel resistance, indicating post-transcriptional mechanisms. To achieve additional ADP inhibition in platelets, antagonists directed at the P2Y1 receptor could be more promising than the development of more potent P2Y12 receptor antagonists
    corecore