5,117 research outputs found

    Self Running Droplet: Emergence of Regular Motion from Nonequilibrium Noise

    Get PDF
    Spontaneous motion of an oil droplet driven by chemical nonequilibricity is reported. It is shown that the droplet undergoes regular rhythmic motion under appropriately designed boundary conditions, whereas it exhibits random motion in an isotropic environment. This study is a novel manifestation on the direct energy transformation of chemical energy into regular spatial-motion under isothermal conditions. A simple mathematical equation including noise reproduces the essential feature of the transition from irregularity into periodic regular motion. Our results will inspire the theoretical study on the mechanism of molecular motors in living matter, working under significant influence of thermal fluctuation.Comment: 4 pages, 4 figure

    The effect of pedunculopontine nucleus deep brain stimulation on postural sway and vestibular perception

    Get PDF
    © 2016 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of Europe an Academy of Neurology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and re production in any medium, provided the original work is properly cited, see https://creativecommons.org/licenses/by/3.0/BACKGROUND AND PURPOSE: Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) reduces the number of falls in patients with Parkinson's disease (PD). It was hypothesized that enhanced sensory processing contributes to this PPN-mediated gait improvement. METHODS: Four PD patients (and eight matched controls) with implanted bilateral PPN and subthalamic nucleus DBS electrodes were assessed on postural (with/without vision) and vestibular perceptual threshold tasks. RESULTS: Pedunculopontine nucleus ON stimulation (compared to OFF) lowered vestibular perceptual thresholds but there was a disproportionate increase in the normal sway increase on going from light to dark. CONCLUSIONS: The disproportionate increased sway with PPN stimulation in the dark may paradoxically improve balance function since mechanoreceptor signals rapidly adapt to continuous pressure stimulation from postural akinesia. Additionally, the PPN-mediated vestibular signal enhancement also improves the monitoring of postural sway. Overall, PPN stimulation may improve sensory feedback and hence balance performance.Peer reviewedFinal Published versio

    Smearing Effect in Plane-Wave Matrix Model

    Full text link
    Motivated by the usual D2-D0 system, we consider a configuration composed of flat membrane and fuzzy sphere membrane in plane-wave matrix model, and investigate the interaction between them. The configuration is shown to lead to a non-trivial interaction potential, which indicates that the fuzzy sphere membrane really behaves like a graviton, giant graviton. Interestingly, the interaction is of r^{-3} type rather than r^{-5} type. We interpret it as the interaction incorporating the smearing effect due to the fact that the considered supersymmetric flat membrane should span and spin in four dimensional subspace of plane-wave geometry.Comment: 26 pages; added referenc

    On the shopfloor: exploring the impact of teacher trade unions on school-based industrial relations

    Get PDF
    Teachers are highly unionised workers and their trade unions exert an important influence on the shaping and implementation of educational policy. Despite this importance there is relatively little analysis of the impact of teacher trade unions in educational management literature. Very little empirical research has sought to establish the impact of teacher unions at school level. In an era of devolved management and quasi-markets this omission is significant. New personnel issues continue to emerge at school level and this may well generate increased trade union activity at the workplace. This article explores the extent to which devolved management is drawing school-based union representation into a more prominent role. It argues that whilst there can be significant differences between individual schools, increased school autonomy is raising the profile of trade union activity in the workplace, and this needs to be better reflected in educational management research

    Density-dependent processes in the transmission of human onchocerciasis: relationship between the numbers of microfilariae ingested and successful larval development in the simuliid vector

    Get PDF
    A previous paper reported that the intake of Onchocerca volvulus microfilariae (mff) by different species of Simulium is essentially proportional to the parasite load in the skin of infected carriers. This paper examines the fate of the ingested mff in susceptible vectors to assess the relationship between parasite intake and infective larval output in blackfly species with and without well-developed cibarial armatures. Analysis is based on data from 3 onchocerciasis endemic areas: Guatemala (S. ochraceum s.l.), West Africa (S. damnosum s.l./S. sirbanum) and the Amazonian focus between South Venezuela and Northern Brazil (S. guianense and S. oyapockense s.l.). The data, which include published and unedited information collected in the field, record experimental studies of parasite uptake by wild flies maintained in captivity until the completion of the extrinsic incubation period. The relationship between L3 output (measured as the mean number of successful larvae/fly or, as the proportion of flies with infective larvae) and average microfilarial intake, was strongly non-linear. This non-linearity was best represented by a sigmoid function in case of armed simuliids (S. ochraceum s.l., S. oyapockense s.l.), or by a hyperbolic expression in that of unarmed flies (S. damnosum s.l., S. guianense). These results are compatible, respectively, with the patterns of ‘initial facilitation' and ‘limitation' described in culicid vectors of lymphatic filariases. A maximum mean number of 1-3 L3/fly was observed in all 4 vectors. It is concluded that O. volvulus larval development to the infective stage is regulated by density-dependent mechanisms acting at the early phase of microfilarial migration out of the blackfly's bloodmeal. Damage by the bucco-pharyngeal armature may also be density dependent. A hypothesis, based on this density dependence is forwarded to explain initial facilitation, so far only recorded in vectors with well-developed cibarial teeth. Our results provide quantitative support for the conjecture that chemotherapy alone is likely to have a greater impact on reducing onchocerciasis transmission in endemic areas where the main vector has a toothed fore-gut than in foci where the vectors have unarmed cibari

    Lars Vegard:key communicator and pioneer crystallographer

    Get PDF
    The Norwegian physicist Lars Vegard studied with William H. Bragg in Leeds and then with Wilhelm Wien in Würzburg. There, in 1912, he heard a lecture by Max Laue describing the first X-ray diffraction experiments and took accurate notes which he promptly sent to Bragg. Although now remembered mainly for his work on the physics of the aurora borealis, Vegard also did important pioneering work in three areas of crystallography. He derived chemical insight from a series of related crystal structures that he determined, Vegard's Law relates the unit-cell dimensions of mixed crystals to those of the pure components, and he determined some of the first crystal structures of gases solidified at cryogenic temperatures

    Effect of magnetic state on the γα\gamma -\alpha transition in iron: First-principle calculations of the Bain transformation path

    Full text link
    Energetics of the fcc (γ\gamma) - bcc (α\alpha) lattice transformation by the Bain tetragonal deformation is calculated for both magnetically ordered and paramagnetic (disordered local moment) states of iron. The first-principle computational results manifest a relevance of the magnetic order in a scenario of the γ\gamma - α\alpha transition and reveal a special role of the Curie temperature of α\alpha-Fe, TCT_C, where a character of the transformation is changed. At a cooling down to the temperatures T<TCT < T_C one can expect that the transformation is developed as a lattice instability whereas for T>TCT > T_C it follows a standard mechanism of creation and growth of an embryo of the new phase. It explains a closeness of TCT_C to the temperature of start of the martensitic transformation, MsM_s.Comment: 4 pages, 3 figures, submitted in Phys. Rev. Letter

    The filtering equations revisited

    Full text link
    The problem of nonlinear filtering has engendered a surprising number of mathematical techniques for its treatment. A notable example is the change-of--probability-measure method originally introduced by Kallianpur and Striebel to derive the filtering equations and the Bayes-like formula that bears their names. More recent work, however, has generally preferred other methods. In this paper, we reconsider the change-of-measure approach to the derivation of the filtering equations and show that many of the technical conditions present in previous work can be relaxed. The filtering equations are established for general Markov signal processes that can be described by a martingale-problem formulation. Two specific applications are treated

    The structure of causal sets

    Get PDF
    More often than not, recently popular structuralist interpretations of physical theories leave the central concept of a structure insufficiently precisified. The incipient causal sets approach to quantum gravity offers a paradigmatic case of a physical theory predestined to be interpreted in structuralist terms. It is shown how employing structuralism lends itself to a natural interpretation of the physical meaning of causal sets theory. Conversely, the conceptually exceptionally clear case of causal sets is used as a foil to illustrate how a mathematically informed rigorous conceptualization of structure serves to identify structures in physical theories. Furthermore, a number of technical issues infesting structuralist interpretations of physical theories such as difficulties with grounding the identity of the places of highly symmetrical physical structures in their relational profile and what may resolve these difficulties can be vividly illustrated with causal sets.Comment: 19 pages, 4 figure

    Recruited macrophages that colonize the post-inflammatory peritoneal niche convert into functionally divergent resident cells

    Get PDF
    Inflammation generally leads to recruitment of monocyte-derived macrophages. What regulates the fate of these cells and to what extent they can assume the identity and function of resident macrophages is unclear. Here, we show that macrophages elicited into the peritoneal cavity during mild inflammation persist long-term but are retained in an immature transitory state of differentiation due to the presence of enduring resident macrophages. By contrast, severe inflammation results in ablation of resident macrophages and a protracted phase wherein the cavity is incapable of sustaining a resident phenotype, yet ultimately elicited cells acquire a mature resident identity. These macrophages also have transcriptionally and functionally divergent features that result from inflammation-driven alterations to the peritoneal cavity micro-environment and, to a lesser extent, effects of origin and time-of-residency. Hence, rather than being predetermined, the fate of inflammation-elicited peritoneal macrophages seems to be regulated by the environment
    corecore