1,438 research outputs found

    Spin ice thin films: Large-N theory and Monte Carlo simulations

    Full text link
    We explore the physics of highly frustrated magnets in confined geometries, focusing on the Coulomb phase of pyrochlore spin ices. As a specific example, we investigate thin films of nearest-neighbor spin ice, using a combination of analytic large-N techniques and Monte Carlo simulations. In the simplest film geometry, with surfaces perpendicular to the [001] crystallographic direction, we observe pinch points in the spin-spin correlations characteristic of a two-dimensional Coulomb phase. We then consider the consequences of crystal symmetry breaking on the surfaces of the film through the inclusion of orphan bonds. We find that when these bonds are ferromagnetic, the Coulomb phase is destroyed by the presence of fluctuating surface magnetic charges, leading to a classical Z_2 spin liquid. Building on this understanding, we discuss other film geometries with surfaces perpendicular to the [110] or the [111] direction. We generically predict the appearance of surface magnetic charges and discuss their implications for the physics of such films, including the possibility of an unusual Z_3 classical spin liquid. Finally, we comment on open questions and promising avenues for future research.Comment: 17 pages, 11 figures. Minor improvements, typos correcte

    Ill-Behaved Convergence of a Model of the Gd3Ga5O12 Garnet Antiferromagnet with Truncated Magnetic Dipole-Dipole Interactions

    Full text link
    Previous studies have found that calculations which consider long-range magnetic dipolar interactions truncated at a finite cut-off distance Rc predict spurious (unphysical) long-range ordered phases for Ising and Heisenberg systems on the pyrochlore lattice. In this paper we show that, similar to these two cases, calculations that use truncated dipolar interactions to model the Gd3Ga5O12 garnet antiferromagnet also predict unphysical phases with incommensurate ordering wave vector q_ord that is very sensitive to the dipolar cut-off distance Rc.Comment: 7 pages, 2 color figures; Proceedings of the HFM2006 conference, to appear in a special issue of J. Phys.: Condens. Matte

    Magnetic anisotropy of the spin ice compound Dy2Ti2O7

    Get PDF
    We report magnetization and ac susceptibility of single crystals of the spin ice compound Dy2Ti2O7. Saturated moments at 1.8 K along the charasteristic axes [100] and [110] agree with the expected values for an effective ferromagnetic nearest-neighbor Ising pyrochlore with local anisotropy, where each magnetic moment is constrained to obey the `ice-rule'. At high enough magnetic fields along the [111] axis, the saturated moment exhibits a beaking of the ice-rule; it agrees with the value expected for a three-in one-out spin configuration. Assuming the realistic magnetic interaction between Dy ions given by the dipolar spin ice model, we completely reproduce the results at 2 K by Monte Carlo calculations. However, down to at least 60 mK, we have not found any experimental evidence of the long-range magnetic ordering predicted by this model to occur at around 180 mK. Instead, we confirm the spin freezing of the system below 0.5 K.Comment: 7 pages, 6 figures, submitted to Phys. Rev.
    corecore