1,638 research outputs found
Combining Contrast Invariant L1 Data Fidelities with Nonlinear Spectral Image Decomposition
This paper focuses on multi-scale approaches for variational methods and
corresponding gradient flows. Recently, for convex regularization functionals
such as total variation, new theory and algorithms for nonlinear eigenvalue
problems via nonlinear spectral decompositions have been developed. Those
methods open new directions for advanced image filtering. However, for an
effective use in image segmentation and shape decomposition, a clear
interpretation of the spectral response regarding size and intensity scales is
needed but lacking in current approaches. In this context, data
fidelities are particularly helpful due to their interesting multi-scale
properties such as contrast invariance. Hence, the novelty of this work is the
combination of -based multi-scale methods with nonlinear spectral
decompositions. We compare with scale-space methods in view of
spectral image representation and decomposition. We show that the contrast
invariant multi-scale behavior of promotes sparsity in the spectral
response providing more informative decompositions. We provide a numerical
method and analyze synthetic and biomedical images at which decomposition leads
to improved segmentation.Comment: 13 pages, 7 figures, conference SSVM 201
A Partial Integrodifferential Equation in Granular Matter and Its Connection with a Stochastic Model
Strong laws of large numbers for sub-linear expectations
We investigate three kinds of strong laws of large numbers for capacities
with a new notion of independently and identically distributed (IID) random
variables for sub-linear expectations initiated by Peng. It turns out that
these theorems are natural and fairly neat extensions of the classical
Kolmogorov's strong law of large numbers to the case where probability measures
are no longer additive. An important feature of these strong laws of large
numbers is to provide a frequentist perspective on capacities.Comment: 10 page
Positive approximations of the inverse of fractional powers of SPD M-matrices
This study is motivated by the recent development in the fractional calculus
and its applications. During last few years, several different techniques are
proposed to localize the nonlocal fractional diffusion operator. They are based
on transformation of the original problem to a local elliptic or
pseudoparabolic problem, or to an integral representation of the solution, thus
increasing the dimension of the computational domain. More recently, an
alternative approach aimed at reducing the computational complexity was
developed. The linear algebraic system , is considered, where is a properly normalized (scalded) symmetric
and positive definite matrix obtained from finite element or finite difference
approximation of second order elliptic problems in ,
. The method is based on best uniform rational approximations (BURA)
of the function for and natural .
The maximum principles are among the major qualitative properties of linear
elliptic operators/PDEs. In many studies and applications, it is important that
such properties are preserved by the selected numerical solution method. In
this paper we present and analyze the properties of positive approximations of
obtained by the BURA technique. Sufficient conditions for
positiveness are proven, complemented by sharp error estimates. The theoretical
results are supported by representative numerical tests
Multiclass Semi-Supervised Learning on Graphs using Ginzburg-Landau Functional Minimization
We present a graph-based variational algorithm for classification of
high-dimensional data, generalizing the binary diffuse interface model to the
case of multiple classes. Motivated by total variation techniques, the method
involves minimizing an energy functional made up of three terms. The first two
terms promote a stepwise continuous classification function with sharp
transitions between classes, while preserving symmetry among the class labels.
The third term is a data fidelity term, allowing us to incorporate prior
information into the model in a semi-supervised framework. The performance of
the algorithm on synthetic data, as well as on the COIL and MNIST benchmark
datasets, is competitive with state-of-the-art graph-based multiclass
segmentation methods.Comment: 16 pages, to appear in Springer's Lecture Notes in Computer Science
volume "Pattern Recognition Applications and Methods 2013", part of series on
Advances in Intelligent and Soft Computin
Nonlinear spectral image fusion
In this paper we demonstrate that the framework of nonlinear spectral
decompositions based on total variation (TV) regularization is very well suited
for image fusion as well as more general image manipulation tasks. The
well-localized and edge-preserving spectral TV decomposition allows to select
frequencies of a certain image to transfer particular features, such as
wrinkles in a face, from one image to another. We illustrate the effectiveness
of the proposed approach in several numerical experiments, including a
comparison to the competing techniques of Poisson image editing, linear
osmosis, wavelet fusion and Laplacian pyramid fusion. We conclude that the
proposed spectral TV image decomposition framework is a valuable tool for semi-
and fully-automatic image editing and fusion
Learning filter functions in regularisers by minimising quotients
Learning approaches have recently become very popular in the field of inverse problems. A large variety of methods has been established in recent years, ranging from bi-level learning to high-dimensional machine learning techniques. Most learning approaches, however, only aim at fitting parametrised models to favourable training data whilst ignoring misfit training data completely. In this paper, we follow up on the idea of learning parametrised regularisation functions by quotient minimisation as established in [3]. We extend the model therein to include higher-dimensional filter functions to be learned and allow for fit- and misfit-training data consisting of multiple functions. We first present results resembling behaviour of well-established derivative-based sparse regularisers like total variation or higher-order total variation in one-dimension. Our second and main contribution is the introduction of novel families of non-derivative-based regularisers. This is accomplished by learning favourable scales and geometric properties while at the same time avoiding unfavourable ones
Hodge Theory on Metric Spaces
Hodge theory is a beautiful synthesis of geometry, topology, and analysis,
which has been developed in the setting of Riemannian manifolds. On the other
hand, spaces of images, which are important in the mathematical foundations of
vision and pattern recognition, do not fit this framework. This motivates us to
develop a version of Hodge theory on metric spaces with a probability measure.
We believe that this constitutes a step towards understanding the geometry of
vision.
The appendix by Anthony Baker provides a separable, compact metric space with
infinite dimensional \alpha-scale homology.Comment: appendix by Anthony W. Baker, 48 pages, AMS-LaTeX. v2: final version,
to appear in Foundations of Computational Mathematics. Minor changes and
addition
- …