7,246 research outputs found
Acid spray technique mills aluminum alloy materials without immersion
Acid spray machining technique chemically mills aluminum alloy panels without immersing them in an etchant. The spray does not require artificial heating to initiate the etching process
Follow-up Observations of the Second and Third Known Pulsating Hot DQ White Dwarfs
We present follow-up time-series photometric observations that confirm and
extend the results of the significant discovery made by Barlow et al.(2008)
that the Hot DQ white dwarfs SDSS J220029.08-074121.5 and SDSS
J234843.30-094245.3 are luminosity variable. These are the second and third
known members of a new class of pulsating white dwarfs, after the prototype
SDSS J142625.71+575218.3 (Montgomery et al. 2008). We find that the light curve
of SDSS J220029.08-074121.5 is dominated by an oscillation at 654.397+-0.056 s,
and that the light pulse folded on that period is highly nonlinear due to the
presence of the first and second harmonic of the main pulsation. We also
present evidence for the possible detection of two additional pulsation modes
with low amplitudes and periods of 577.576+-0.226 s and 254.732+-0.048 s in
that star. Likewise, we find that the light curve of SDSS J234843.30-094245.3
is dominated by a pulsation with a period of 1044.168+-0.012 s, but with no
sign of harmonic components. A new oscillation, with a low amplitude and a
period of 416.919+-0.004 s, is also probably detected in that second star. We
argue, on the basis of the very different folded pulse shapes, that SDSS
J220029.08-074121.5 is likely magnetic, while SDSS J234843.30-094245.3 is
probably not.Comment: 12 pages, 19 figures, accepted for publication in Ap
Follow-up Studies of the Pulsating Magnetic White Dwarf SDSS J142625.71+575218.3
We present a follow-up analysis of the unique magnetic luminosity-variable
carbon-atmosphere white dwarf SDSS J142625.71+575218.3. This includes the
results of some 106.4 h of integrated light photometry which have revealed,
among other things, the presence of a new periodicity at 319.720 s which is not
harmonically related to the dominant oscillation (417.707 s) previously known
in that star. Using our photometry and available spectroscopy, we consider the
suggestion made by Montgomery et al. (2008) that the luminosity variations in
SDSS J142625.71+575218.3 may not be caused by pulsational instabilities, but
rather by photometric activity in a carbon-transferring analog of AM CVn. This
includes a detailed search for possible radial velocity variations due to rapid
orbital motion on the basis of MMT spectroscopy. At the end of the exercise, we
unequivocally rule out the interacting binary hypothesis and conclude instead
that, indeed, the luminosity variations are caused by g-mode pulsations as in
other pulsating white dwarfs. This is in line with the preferred possibility
put forward by Montgomery et al. (2008).Comment: 11 pages in emulateApJ, 12 figures, accepted for publication in Ap
Almost Sure Stabilization for Adaptive Controls of Regime-switching LQ Systems with A Hidden Markov Chain
This work is devoted to the almost sure stabilization of adaptive control
systems that involve an unknown Markov chain. The control system displays
continuous dynamics represented by differential equations and discrete events
given by a hidden Markov chain. Different from previous work on stabilization
of adaptive controlled systems with a hidden Markov chain, where average
criteria were considered, this work focuses on the almost sure stabilization or
sample path stabilization of the underlying processes. Under simple conditions,
it is shown that as long as the feedback controls have linear growth in the
continuous component, the resulting process is regular. Moreover, by
appropriate choice of the Lyapunov functions, it is shown that the adaptive
system is stabilizable almost surely. As a by-product, it is also established
that the controlled process is positive recurrent
Might Carbon-Atmosphere White Dwarfs Harbour a New Type of Pulsating Star?
In the light of the recent and unexpected discovery of a brand new type of
white dwarfs, those with carbon-dominated atmospheres, we examine the
asteroseismological potential of such stars. The motivation behind this is
based on the observation that past models of carbon-atmosphere white dwarfs
have partially ionized outer layers that bear strong resemblance with those
responsible for mode excitation in models of pulsating DB (helium-atmosphere)
and pulsating DA (hydrogen-atmosphere) white dwarfs. Our exciting main result
is that, given the right location in parameter space, some carbon-atmosphere
white dwarfs are predicted to show pulsational instability against gravity
modes. We are eagerly waiting the results of observational searches for
luminosity variations in these stars.Comment: 4-page letter + 4 figure
Pulsation in carbon-atmosphere white dwarfs: A new chapter in white dwarf asteroseismology
We present some of the results of a survey aimed at exploring the
asteroseismological potential of the newly-discovered carbon-atmosphere white
dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere
white dwarfs may drive low-order gravity modes. We demonstrate that our
theoretical results are consistent with the recent exciting discovery of
luminosity variations in SDSS J1426+5752 and some null results obtained by a
team of scientists at McDonald Observatory. We also present follow-up
photometric observations carried out by ourselves at the Mount Bigelow 1.6-m
telescope using the new Mont4K camera. The results of follow-up spectroscopic
observations at the MMT are also briefly reported, including the surprising
discovery that SDSS J1426+5752 is not only a pulsating star but that it is also
a magnetic white dwarf with a surface field near 1.2 MG. The discovery of
-mode pulsations in SDSS J1426+5752 is quite significant in itself as it
opens a fourth asteroseismological "window", after the GW Vir, V777 Her, and ZZ
Ceti families, through which one may study white dwarfs.Comment: 7 pages, 4 figures, to appear in Journal of Physics Conference
Proceedings for the 16th European White Dwarf Worksho
Rare White dwarf stars with carbon atmospheres
White dwarfs represent the endpoint of stellar evolution for stars with
initial masses between approximately 0.07 msun and 8-10 msun, where msun is the
mass of the Sun (more massive stars end their life as either black holes or
neutron stars). The theory of stellar evolution predicts that the majority of
white dwarfs have a core made of carbon and oxygen, which itself is surrounded
by a helium layer and, for ~80 per cent of known white dwarfs, by an additional
hydrogen layer. All white dwarfs therefore have been traditionally found to
belong to one of two categories: those with a hydrogen-rich atmosphere (the DA
spectral type) and those with a helium-rich atmosphere (the non-DAs). Here we
report the discovery of several white dwarfs with atmospheres primarily
composed of carbon, with little or no trace of hydrogen or helium. Our analysis
shows that the atmospheric parameters found for these stars do not fit
satisfactorily in any of the currently known theories of post-asymptotic giant
branch evolution, although these objects might be the cooler counterpart of the
unique and extensively studied PG1159 star H1504+65. These stars, together with
H1504+65, might accordingly form a new evolutionary sequence that follow the
asymptotic giant branch.Comment: 7 pages, 1 figure, to appear in Nov 22nd 2007 edition of Natur
- …